Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kendra Sirak is active.

Publication


Featured researches published by Kendra Sirak.


Nature | 2015

Genome-wide patterns of selection in 230 ancient Eurasians

Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause

Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Nature | 2016

Genomic insights into the origin of farming in the ancient Near East

Iosif Lazaridis; Dani Nadel; Gary O. Rollefson; Deborah C. Merrett; Nadin Rohland; Swapan Mallick; Daniel Fernandes; Mario Novak; Beatriz Gamarra; Kendra Sirak; Sarah Connell; Kristin Stewardson; Eadaoin Harney; Qiaomei Fu; Gloria Gonzalez-Fortes; Eppie R. Jones; Songül Alpaslan Roodenberg; György Lengyel; Fanny Bocquentin; Boris Gasparian; Janet Monge; Michael C. Gregg; Vered Eshed; Ahuva-Sivan Mizrahi; Christopher Meiklejohn; F.A. Gerritsen; Luminita Bejenaru; Matthias Blüher; Archie Campbell; Gianpiero L. Cavalleri

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.


PLOS ONE | 2015

Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone

Ron Pinhasi; Daniel Fernandes; Kendra Sirak; Mario Novak; Sarah Connell; Songül Alpaslan-Roodenberg; F.A. Gerritsen; Vyacheslav Moiseyev; Andrey Gromov; Pál Raczky; Alexandra Anders; Michael Pietrusewsky; Gary O. Rollefson; Marija Jovanovic; Hiep Trinhhoang; Guy Bar-Oz; Marc Oxenham; Hirofumi Matsumura; Michael Hofreiter

The invention and development of next or second generation sequencing methods has resulted in a dramatic transformation of ancient DNA research and allowed shotgun sequencing of entire genomes from fossil specimens. However, although there are exceptions, most fossil specimens contain only low (~ 1% or less) percentages of endogenous DNA. The only skeletal element for which a systematically higher endogenous DNA content compared to other skeletal elements has been shown is the petrous part of the temporal bone. In this study we investigate whether (a) different parts of the petrous bone of archaeological human specimens give different percentages of endogenous DNA yields, (b) there are significant differences in average DNA read lengths, damage patterns and total DNA concentration, and (c) it is possible to obtain endogenous ancient DNA from petrous bones from hot environments. We carried out intra-petrous comparisons for ten petrous bones from specimens from Holocene archaeological contexts across Eurasia dated between 10,000-1,800 calibrated years before present (cal. BP). We obtained shotgun DNA sequences from three distinct areas within the petrous: a spongy part of trabecular bone (part A), the dense part of cortical bone encircling the osseous inner ear, or otic capsule (part B), and the dense part within the otic capsule (part C). Our results confirm that dense bone parts of the petrous bone can provide high endogenous aDNA yields and indicate that endogenous DNA fractions for part C can exceed those obtained for part B by up to 65-fold and those from part A by up to 177-fold, while total endogenous DNA concentrations are up to 126-fold and 109-fold higher for these comparisons. Our results also show that while endogenous yields from part C were lower than 1% for samples from hot (both arid and humid) parts, the DNA damage patterns indicate that at least some of the reads originate from ancient DNA molecules, potentially enabling ancient DNA analyses of samples from hot regions that are otherwise not amenable to ancient DNA analyses.


Nature | 2016

Genomic insights into the peopling of the Southwest Pacific

Pontus Skoglund; Cosimo Posth; Kendra Sirak; Matthew Spriggs; Frédérique Valentin; Stuart Bedford; Geoffrey Clark; Christian Reepmeyer; Fiona Petchey; Daniel Fernandes; Qiaomei Fu; Eadaoin Harney; Mark Lipson; Swapan Mallick; Mario Novak; Nadine Rohland; Kristin Stewardson; Syafiq Abdullah; Murray P. Cox; Françoise R. Friedlaender; Jonathan S. Friedlaender; Toomas Kivisild; George Koki; Pradiptajati Kusuma; D. Andrew Merriwether; F. X. Ricaut; Joseph Wee; Nick Patterson; Johannes Krause; Ron Pinhasi

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100–2,700 years before present) and one from Tonga (about 2,700–2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.


Scientific Reports | 2017

The Identification of a 1916 Irish Rebel: New Approach for Estimating Relatedness from Low Coverage Homozygous Genomes

Daniel Fernandes; Kendra Sirak; Mario Novak; John A. Finarelli; Jeanette E. L. Carlsson; Edmondo Ferretti; Ron Pinhasi; Jens Carlsson

Thomas Kent was an Irish rebel who was executed by British forces in the aftermath of the Easter Rising armed insurrection of 1916 and buried in a shallow grave on Cork prison’s grounds. In 2015, ninety-nine years after his death, a state funeral was offered to his living family to honor his role in the struggle for Irish independence. However, inaccuracies in record keeping did not allow the bodily remains that supposedly belonged to Kent to be identified with absolute certainty. Using a novel approach based on homozygous single nucleotide polymorphisms, we identified these remains to be those of Kent by comparing his genetic data to that of two known living relatives. As the DNA degradation found on Kent’s DNA, characteristic of ancient DNA, rendered traditional methods of relatedness estimation unusable, we forced all loci homozygous, in a process we refer to as “forced homozygote approach”. The results were confirmed using simulated data for different relatedness classes. We argue that this method provides a necessary alternative for relatedness estimations, not only in forensic analysis, but also in ancient DNA studies, where reduced amounts of genetic information can limit the application of traditional methods.


International Journal of Paleopathology | 2014

Analysis of nutritional disease in prehistory: The search for scurvy in antiquity and today

George J. Armelagos; Kendra Sirak; Taylor Werkema; Bethany L. Turner

In this paper, we discuss the issues surrounding the study of scurvy, or vitamin C deficiency, in paleopathology, and highlight the work of Donald Ortner in advancing this area of research. This micronutrient deficiency impacts collagen formation and results in damage to a variety of bodily tissues. While clinical manifestations are observed routinely, the lack of specific signatures on bone makes paleopathological diagnosis difficult. Rapid growth in infants, children, and subadults provides abundant remodeled tissue and an increase in vascularization that makes identification possible in younger segments of the population. However, diagnosis of scurvy in adults remains problematic, given that diagnostic lesions are strikingly similar to those associated with rickets, osteomalacia, and other conditions. We argue that this confounding factor underscores the need for a broader anthropological approach to scurvy research that expands beyond differential diagnosis to include more accurate reconstruction of diets and available resources, greater consideration of the possibility - even likelihood - of multiple nutrient deficiencies simultaneously affecting an individual, and the patterning of these deficiencies along lines of status, sex, and age.


bioRxiv | 2015

Eight thousand years of natural selection in Europe

Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause

The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. While indirect evidence of adaptation can be detected in patterns of genetic variation in present-day people, ancient DNA makes it possible to witness selection directly by analyzing samples from populations before, during and after adaptation events. Here we report the first genome-wide scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture, who we show were members of the population that was the source of Europe’s first farmers, and whose genetic material we extracted by focusing on the DNA-rich petrous bone. We identify genome-wide significant signatures of selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.


Science | 2018

Ancient genomes document multiple waves of migration in Southeast Asian prehistory

Mark Lipson; Olivia Cheronet; Swapan Mallick; Nadin Rohland; Marc Oxenham; Michael Pietrusewsky; Thomas Oliver Pryce; Anna Willis; Hirofumi Matsumura; Hallie R. Buckley; Kate Domett; Giang Hai Nguyen; Hoang Hiep Trinh; Aung Aung Kyaw; Tin Tin Win; Baptiste Pradier; Nasreen Broomandkhoshbacht; Francesca Candilio; Piya Changmai; Daniel Fernandes; Matthew Ferry; Beatriz Gamarra; Eadaoin Harney; Jatupol Kampuansai; Wibhu Kutanan; Megan Michel; Mario Novak; Jonas Oppenheimer; Kendra Sirak; Kristin Stewardson

Ancient migrations in Southeast Asia The past movements and peopling of Southeast Asia have been poorly represented in ancient DNA studies (see the Perspective by Bellwood). Lipson et al. generated sequences from people inhabiting Southeast Asia from about 1700 to 4100 years ago. Screening of more than a hundred individuals from five sites yielded ancient DNA from 18 individuals. Comparisons with present-day populations suggest two waves of mixing between resident populations. The first mix was between local hunter-gatherers and incoming farmers associated with the Neolithic spreading from South China. A second event resulted in an additional pulse of genetic material from China to Southeast Asia associated with a Bronze Age migration. McColl et al. sequenced 26 ancient genomes from Southeast Asia and Japan spanning from the late Neolithic to the Iron Age. They found that present-day populations are the result of mixing among four ancient populations, including multiple waves of genetic material from more northern East Asian populations. Science, this issue p. 92, p. 88; see also p. 31 Ancient DNA data shed light on the past 4000 years of Southeast Asian genetic history. Southeast Asia is home to rich human genetic and linguistic diversity, but the details of past population movements in the region are not well known. Here, we report genome-wide ancient DNA data from 18 Southeast Asian individuals spanning from the Neolithic period through the Iron Age (4100 to 1700 years ago). Early farmers from Man Bac in Vietnam exhibit a mixture of East Asian (southern Chinese agriculturalist) and deeply diverged eastern Eurasian (hunter-gatherer) ancestry characteristic of Austroasiatic speakers, with similar ancestry as far south as Indonesia providing evidence for an expansive initial spread of Austroasiatic languages. By the Bronze Age, in a parallel pattern to Europe, sites in Vietnam and Myanmar show close connections to present-day majority groups, reflecting substantial additional influxes of migrants.


BioTechniques | 2017

A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis

Kendra Sirak; Daniel Fernandes; Olivia Cheronet; Mario Novak; Beatriz Gamarra; Tímea Balassa; Zsolt Bernert; Andrea Cséki; János Dani; József zsolt Gallina; Gábor Kocsis-Buruzs; Ivett Kővári; Orsolya László; Ildikó Pap; Róbert Patay; Zsolt Petkes; Gergely Szenthe; Tamás Szeniczey; Tamás Hajdu; Ron Pinhasi

Ancient DNA (aDNA) research involves invasive and destructive sampling procedures that are often incompatible with anthropological, anatomical, and bioarcheological analyses requiring intact skeletal remains. The osseous labyrinth inside the petrous bone has been shown to yield higher amounts of endogenous DNA than any other skeletal element; however, accessing this labyrinth in cases of a complete or reconstructed skull involves causing major structural damage to the cranial vault or base. Here, we describe a novel cranial base drilling method (CBDM) for accessing the osseous labyrinth from the cranial base that prevents damaging the surrounding cranial features, making it highly complementary to morphological analyses. We assessed this method by comparing the aDNA results from one petrous bone processed using our novel method to its pair, which was processed using established protocols for sampling disarticulated petrous bones. We show a decrease in endogenous DNA and molecular copy numbers when the drilling method is used; however, we also show that this method produces more endogenous DNA and higher copy numbers than any postcranial bone. Our results demonstrate that this minimally-invasive method reduces the loss of genetic data associated with the use of other skeletal elements and enables the combined craniometric and genetic study of individuals with archeological, cultural, and evolutionary value.


bioRxiv | 2016

The genetic structure of the world's first farmers

Iosif Lazaridis; Dani Nadel; Gary O. Rollefson; Deborah C. Merrett; Nadin Rohland; Swapan Mallick; Daniel Fernandes; Mario Novak; Beatriz Gamarra; Kendra Sirak; Sarah Connell; Kristin Stewardson; Eadaoin Harney; Qiaomei Fu; Gloria Gonzalez-Fortes; Songül Alpaslan Roodenberg; György Lengyel; Fanny Bocquentin; Boris Gasparian; Janet Monge; Michael W Gregg; Vered Eshed; Ahuva-Sivan Mizrahi; Christopher Meiklejohn; F.A. Gerritsen; Luminita Bejenaru; Matthias Blueher; Archie Campbell; Gianpero Cavalleri; David Comas

We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000-1,400 BCE, from Natufian hunter-gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages prior to their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter-gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter-gatherers of Europe to drastically reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those from Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.

Collaboration


Dive into the Kendra Sirak's collaboration.

Top Co-Authors

Avatar

Mario Novak

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Gamarra

University College Dublin

View shared research outputs
Researchain Logo
Decentralizing Knowledge