Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin M. Holtman is active.

Publication


Featured researches published by Kevin M. Holtman.


Green Chemistry | 2014

Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production

Noppadon Sathitsuksanoh; Kevin M. Holtman; Daniel J. Yelle; Trevor Morgan; Vitalie Stavila; Jeffrey G. Pelton; Harvey W. Blanch; Blake A. Simmons; Anthe George

The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a combination of a novel solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) method, and size exclusion chromatography (SEC). Pretreatment of biomass samples by [C2mim][OAc] at 120 and 160 °C enhances hydrolysis rates and enzymatic glucan digestions compared to those of untreated biomass samples. Lignin partitioning into the different streams can be controlled by altering the ionic liquid pre-treatment conditions, with higher temperatures favoring higher lignin partitioning to the IL stream. 2D NMR bond abundance data and SEC results reveal that lignin is depolymerized during ionic liquid pretreatment, and lignin of different molecular masses can be isolated in the different process streams. SEC suggested that higher molecular mass lignin was precipitated from the ionic liquid, leaving smaller molecular mass lignin in solution for further extraction. Lignin obtained as a residue of enzymatic hydrolysis contained the highest molecular mass molecules, similar in structure to the control lignin. The results suggest that isolated lignins via IL pretreatment from all three feedstocks were both depolymerized and did not contain new condensed structures. This finding leads to the possibility that lignin obtained from this IL pretreatment process may be more amenable to upgrading, thereby enhancing biorefinery economics.


Journal of Agricultural and Food Chemistry | 2008

Agricultural chemistry and bioenergy

William J. Orts; Kevin M. Holtman; James N. Seiber

Renewed interest in converting biomass to biofuels such as ethanol, other forms of bioenergy, and bioenergy byproducts or coproducts of commercial value opens opportunities for chemists, including agricultural chemists and related disciplines. Applications include feedstock characterization and quantification of structural changes resulting from genetic modification and of the intermediates formed during enzymatic and chemical processing; development of improved processes for utilizing chemical coproducts such as lactic acid and glycerol; development of alternative biofuels such as methanol, butanol, and hydrogen; and ways to reduce greenhouse gas emission and/or use carbon dioxide beneficially. Chemists will also be heavily involved in detailing the phytochemical composition of alternative energy crops and genetically improved crops. A resurgence of demand for agricultural chemistry and related disciplines argues for increasing output through targeted programs and on-the-job training.


Journal of Agricultural and Food Chemistry | 2010

Chemical structures of corn stover and its residue after dilute acid prehydrolysis and enzymatic hydrolysis: insight into factors limiting enzymatic hydrolysis.

Jingdong Mao; Kevin M. Holtman; Diana Franqui-Villanueva

Advanced solid-state NMR techniques and wet chemical analyses were applied to investigate untreated corn stover (UCS) and its residues after dilute acid prehydrolysis (DAP) and enzymatic hydrolysis (RES) to provide evidence for the limitations to the effectiveness of enzyme hydrolysis. Advanced solid-state NMR spectral-editing techniques as well as 1H-13C two-dimensional heteronuclear correlation NMR (2D HETCOR) were employed. Our results indicated that dilute acid prehydrolysis selectively removed amorphous carbohydrates, increased aromatic CH/other protonated -C═C- and enriched alkyl CH and CH2 components. Cinnamic acids were increased, and proteinaceous materials and N-containing degradation or condensation compounds were absorbed or coprecipitated in RES. 2D HETCOR experiments indicated a close association between lignin and the residual carbohydrates. Ketones/aldehydes were not detected in the DAP, in contrast to a report in which an appreciable amount of ketones/aldehydes was generated from the acid pretreatment of a purified cellulose in the literature. This suggested that acid pretreatment may modify the structure of purified cellulose more than biomass and that biomass may be a better substrate than model biopolymers and compounds for assessing structural changes that occur with industrial processing. On the basis of NMR and wet chemical analyses, we found the following factors could cause the limitations to the effectiveness of enzymatic hydrolysis: (1) chemical modification of carbohydrates limited the biologically degradable carbohydrates available; (2) cinnamic acids in the residue accumulated; (3) accessibility was potentially limited due to the close association of carbohydrates with lignin; and (4) proteinaceous materials and N-containing degradation or condensation compounds were absorbed or coprecipitated.


Journal of Wood Chemistry and Technology | 2007

An NMR Comparison of the Whole Lignin from Milled Wood, MWL, and REL Dissolved by the DMSO/NMI Procedure

Kevin M. Holtman; Hou-min Chang; John F. Kadla

Abstract Lignins isolated from pine milled wood, milled wood lignin (MWL), and residual enzyme lignin (REL) were compared using modified thioacidolysis, modified DFRC, gel permeation chromatography (GPC), two‐dimensional Heteronuclear Multiple Quantum Coherence (HMQC) NMR, and quantitative 13C NMR. Dissolution of the lignin for solution‐state NMR was accomplished by utilizing the recently reported DMSO/N‐methylimidazole/acetic anhydride solvent system. Contrary to previous reports, comparison of the lignin preparations by thioacidolysis indicated that REL was more structurally similar to the lignin in the milled wood and Wiley wood meal than MWL. Total monomer yields indicated that the MWL was lower in β‐aryl ether content than the other preparations, and this was verified by quantitative 13C NMR. NMR analysis indicated that the inter‐unit linkages present in all the lignin preparations are consistent with the present knowledge about lignin biosynthesis. The contribution of minor end group structures in the MWL are further decreased in the milled wood, indicating that they are preferentially isolated as low molecular weight material, possibly generated during the milling process. All other structural moieties were similar in all preparations. GPC data indicated that the milled wood and REL both contain a portion of lignin with a molecular weight of 55,000 g/mol. Data indicate that the inefficiency of the DFRC method may be related to molecular mobility or accessibility in higher molecular weight portions of the lignin polymer.


Journal of Agricultural and Food Chemistry | 2010

Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy.

Kevin M. Holtman; Na Chen; Mark A. Chappell; John F. Kadla; Ling Xu; Jingdong Mao

Advanced solid-state NMR was employed to investigate differences in chemical structure and heterogeneity between milled wood lignin (MWL) and residual enzyme lignin (REL). Wiley and conventional milled woods were also studied. The advanced NMR techniques included 13C quantitative direct polarization, various spectral-editing techniques, and two-dimensional 1H-13C heteronuclear correlation NMR with 1H spin diffusion. The 13C chemical shift regions between 110 and 160 ppm of two lignins were quite similar to those of two milled woods. REL contained much more residual carbohydrates than MWL, showing that MWL extraction more successfully separated lignin from cellulose and hemicelluloses than REL extraction; REL was also of higher COO, aromatic C-C, and condensed aromatics but of lower aromatic C-H. At a spin diffusion time of 0.55 ms, the magnetization was equilibrated through the whole structure of MWL lignin, but not through that of REL, indicating that REL is more heterogeneous than MWL.


Cellulose | 2016

Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing

G. H. D. Tonoli; Kevin M. Holtman; Gregory M. Glenn; Alessandra de Souza Fonseca; Delilah F. Wood; Tina G. Williams; V. A. Sa; L. Torres; Artur K. Klamczynski; William J. Orts

High production costs remain the single greatest factor limiting wider use of cellulose micro/nanofibers by industry. The objective of the present study was to investigate the potential of using a low-cost bacteria-rich digestate (liquid anaerobic digestate—AD-supernatant) on milled eucalyptus fiber followed by high-shear mixing to obtain cellulose micro/nanofibers. The morphology, crystallinity, and thermal stability of micro/nanofibers obtained by this process were studied. The bacteria population in the AD-supernatant was comprised mostly of Bacteroides graminisolvens and Parabacteroides chartae. The digestate treatment partially removed amorphous components of the pulp fiber thereby decreasing micro/nanofiber diameters and enhancing the crystalline content. The treatment also increased the size of the crystalline cellulose. The morphology and crystallinity results demonstrate the effectiveness of digestate treatments coupled with high-shear mixing as a procedure for the production of micro/nanofibers.


Waste Management & Research | 2016

A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage

Kevin M. Holtman; David V. Bozzi; Diana Franqui-Villanueva; Richard D. Offeman; William J. Orts

A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg−1 material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg−1.


Journal of Agricultural and Food Chemistry | 2015

Countercurrent Extraction of Soluble Sugars from Almond Hulls and Assessment of the Bioenergy Potential

Kevin M. Holtman; Richard D. Offeman; Diana Franqui-Villanueva; Andre K. Bayati; William J. Orts

Almond hulls contain considerable proportions (37% by dry weight) of water-soluble, fermentable sugars (sucrose, glucose, and fructose), which can be extracted for industrial purposes. The maximum optimal solids loading was determined to be 20% for sugar extraction, and the addition of 0.5% (w/v) pectinase aided in maintaining a sufficient free water volume for sugar recovery. A laboratory countercurrent extraction experiment utilizing a 1 h steep followed by three extraction (wash) stages produced a high-concentration (131 g/L fermentable sugar) syrup. Overall, sugar recovery efficiency was 88%. The inner stage washing efficiencies were compatible with solution equilibrium calculations, indicating that efficiency was high. The concentrated sugar syrup was fermented to ethanol at high efficiency (86% conversion), and ethanol concentrations in the broth were 7.4% (v/v). Thin stillage contained 233 g SCOD/L, which was converted to biomethane at an efficiency of 90% with a biomethane potential of 297 mL/g SCODdestroyed. Overall, results suggested that a minima of 49 gal (185 L) ethanol and 75 m(3) methane/t hulls (dry whole hull basis) are achievable.


Journal of Agricultural and Food Chemistry | 2002

Studies on the Effect of Ball Milling on Lignin Structure Using a Modified DFRC Method

Tsutomu Ikeda; Kevin M. Holtman; John F. Kadla; Hou-min Chang; Hasan Jameel


Journal of Agricultural and Food Chemistry | 2004

Solution-state nuclear magnetic resonance study of the similarities between milled wood lignin and cellulolytic enzyme lignin.

Kevin M. Holtman; Hou-min Chang; John F. Kadla

Collaboration


Dive into the Kevin M. Holtman's collaboration.

Top Co-Authors

Avatar

William J. Orts

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Gregory M. Glenn

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John F. Kadla

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Diana Franqui-Villanueva

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jingdong Mao

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

Richard D. Offeman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Artur P. Klamczynski

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Delilah F. Wood

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hou-min Chang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Syed H. Imam

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge