Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Pethe is active.

Publication


Featured researches published by Kevin Pethe.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis

Srinivasa P. S. Rao; Sylvie Alonso; Lucinda Rand; Thomas Dick; Kevin Pethe

The persistence of Mycobacterium tuberculosis despite prolonged chemotherapy represents a major obstacle for the control of tuberculosis. The mechanisms used by Mtb to persist in a quiescent state are largely unknown. Chemical genetic and genetic approaches were used here to study the physiology of hypoxic nonreplicating mycobacteria. We found that the intracellular concentration of ATP is five to six times lower in hypoxic nonreplicating Mtb cells compared with aerobic replicating bacteria, making them exquisitely sensitive to any further depletion. We show that de novo ATP synthesis is essential for the viability of hypoxic nonreplicating mycobacteria, requiring the cytoplasmic membrane to be fully energized. In addition, the anaerobic electron transport chain was demonstrated to be necessary for the generation of the protonmotive force. Surprisingly, the alternate ndh-2, but not -1, was shown to be the electron donor to the electron transport chain and to be essential to replenish the [NAD+] pool in hypoxic nonreplicating Mtb. Finally, we describe here the high bactericidal activity of the F0F1 ATP synthase inhibitor R207910 on hypoxic nonreplicating bacteria, supporting the potential of this drug candidate for shortening the time of tuberculosis therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy

Sylvie Alonso; Kevin Pethe; David G. Russell; Georgiana E. Purdy

Mycobacterium tuberculosis parasitizes resting macrophages yet is killed by activated macrophages through both oxidative and nonoxidative mechanisms. Nonoxidative mechanisms are linked to the maturation of the bacteria-containing phagosome into an acidified, hydrolytically active compartment. We describe here a mechanism for killing Mycobacteria in the lysosomal compartment through the activity of peptides generated by the hydrolysis of ubiquitin. The induction of autophagy in infected macrophages enhanced the delivery of ubiquitin conjugates to the lysosome and increased the bactericidal capacity of the lysosomal soluble fraction. The accumulation of ubiquitinated proteins in the autophagolysosome provides one possible mechanism behind the antimicrobial activities observed for a range of pathogens in autophagous host cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection

Joeli Marrero; Kyu Y. Rhee; Dirk Schnappinger; Kevin Pethe; Sabine Ehrt

Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb). In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and 13C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle–derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow–derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNγ-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy.


Nature Medicine | 2013

Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis

Kevin Pethe; Pablo Bifani; Jichan Jang; Sunhee Kang; Seijin Park; Sujin Ahn; Jan Jiricek; Juyoung Jung; Hee Kyoung Jeon; Jonathan Cechetto; Thierry Christophe; Honggun Lee; Marie Kempf; Mary Jackson; Anne J. Lenaerts; Hang Ohuong Pham; Victoria Jones; Min Jung Seo; Young Mi Kim; Mooyoung Seo; Jeong Jea Seo; Dongsik Park; Yoonae Ko; Inhee Choi; Ryangyeo Kim; Se Yeon Kim; Seungbin Lim; Seung-Ae Yim; Jiyoun Nam; Hwankyu Kang

New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.


Nature Medicine | 2004

Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin

Stéphane Temmerman; Kevin Pethe; Marcela Parra; Sylvie Alonso; Carine Rouanet; Thames Pickett; Annie Drowart; Anne Sophie Debrie; Giovanni Delogu; Franco D. Menozzi; Christian Sergheraert; Michael J. Brennan; Françoise Mascart; Camille Locht

Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis

Kevin Pethe; Pablo Bifani; Hervé Drobecq; Christian Sergheraert; Anne-Sophie Debrie; Camille Locht; Franco D. Menozzi

Mycobacterium tuberculosis and Mycobacteriumbovis bacillus Calmette–Guérin produce a heparin-binding hemagglutinin adhesin (HBHA) required for extrapulmonary dissemination and a laminin-binding protein (LBP) involved in cytoadherence through laminin recognition. These adhesins bear posttranslational modifications that are not present when the proteins are produced in a recombinant (r) form in Escherichia coli. Mass spectrometry analysis of HBHA revealed that the posttranslational modifications are borne by the C-terminal moiety, which comprises the heparin-binding domain made of repeated lysine-rich motifs. Amino acid sequencing showed that these modifications consist of mono- and dimethyllysines within these motifs. The methyllysine-containing repeats were recognized by mAb 4057D2 and were also detected in LBP, which is equally recognized by mAb 4057D2. This Ab does not recognize the recombinant forms of these proteins. However, when rHBHA and rLBP were subjected to NaBH4 and formalin treatment to induce lysine methylation, reactivity with mAb 4057D2 was recovered. Methylated rHBHA displayed enhanced resistance to proteolysis compared with rHBHA, as previously observed for native HBHA. S-adenosylmethionine-dependent HBHA methyltransferase activity was detected in the cell-wall fractions of M. bovis bacillus Calmette–Guérin and of Mycobacteriumsmegmatis, a species that produces LBP but naturally lacks hbhA, suggesting that the same enzyme(s) methylate(s) both LBP and HBHA. This hypothesis was confirmed by the fact that HBHA produced by recombinant M. smegmatis was also methylated. These results show that mycobacteria use enzymatic methylation of lysines to ensure greater stability of their adhesins.


The Journal of Infectious Diseases | 2002

Differential T and B Cell Responses against Mycobacterium tuberculosis Heparin-Binding Hemagglutinin Adhesin in Infected Healthy Individuals and Patients with Tuberculosis

Chantal Masungi; Stéphane Temmerman; Jean-Paul Van Vooren; Annie Drowart; Kevin Pethe; Franco D. Menozzi; Camille Locht; Françoise Mascart

Because only 10% of individuals infected with Mycobacterium tuberculosis will eventually develop disease, antigens that are recognized differently by the immune systems of infected healthy and diseased subjects may constitute potential vaccine candidates. Here, the heparin-binding hemagglutinin adhesin (HBHA) is identified as such an antigen. Lymphocytes from 60% of healthy infected individuals (n=25) produced interferon (IFN)-gamma after stimulation with HBHA, compared with only 4% of patients with active tuberculosis (n=24). In the responders, both CD4(+) and CD8(+) cells secreted HBHA-specific IFN-gamma, and the antigen was presented by both major histocompatibility complex class I and II molecules. In contrast to the reduced ability of patients with tuberculosis to produce HBHA-specific IFN-gamma, most of them (82%) produced anti-HBHA antibodies, compared with 36% of the infected healthy subjects. These observations indicate that HBHA is recognized differently by the immune systems of patients with tuberculosis and infected healthy individuals and might provide a marker for protection against tuberculosis.


Journal of Biological Chemistry | 2008

Biosynthesis and Recycling of Nicotinamide Cofactors in Mycobacterium tuberculosis AN ESSENTIAL ROLE FOR NAD IN NONREPLICATING BACILLI

Helena I. Boshoff; Xia Xu; Kapil Tahlan; Cynthia S. Dowd; Kevin Pethe; Luis R. Camacho; Tae-Ho Park; Chang-Soo Yun; Dirk Schnappinger; Sabine Ehrt; Kerstin J. Williams; Clifton E. Barry

Despite the presence of genes that apparently encode NAD salvage-specific enzymes in its genome, it has been previously thought that Mycobacterium tuberculosis can only synthesize NAD de novo. Transcriptional analysis of the de novo synthesis and putative salvage pathway genes revealed an up-regulation of the salvage pathway genes in vivo and in vitro under conditions of hypoxia. [14C]Nicotinamide incorporation assays in M. tuberculosis isolated directly from the lungs of infected mice or from infected macrophages revealed that incorporation of exogenous nicotinamide was very efficient in in vivo-adapted cells, in contrast to cells grown aerobically in vitro. Two putative nicotinic acid phosphoribosyltransferases, PncB1 (Rv1330c) and PncB2 (Rv0573c), were examined by a combination of in vitro enzymatic activity assays and allelic exchange studies. These studies revealed that both play a role in cofactor salvage. Mutants in the de novo pathway died upon removal of exogenous nicotinamide during active replication in vitro. Cell death is induced by both cofactor starvation and disruption of cellular redox homeostasis as electron transport is impaired by limiting NAD. Inhibitors of NAD synthetase, an essential enzyme common to both recycling and de novo synthesis pathways, displayed the same bactericidal effect as sudden NAD starvation of the de novo pathway mutant in both actively growing and nonreplicating M. tuberculosis. These studies demonstrate the plasticity of the organism in maintaining NAD levels and establish that the two enzymes of the universal pathway are attractive chemotherapeutic targets for active as well as latent tuberculosis.


Journal of Bacteriology | 2009

Triacylglycerol Utilization Is Required for Regrowth of In Vitro Hypoxic Nonreplicating Mycobacterium bovis Bacillus Calmette-Guerin

Kai Leng Low; P. S. Srinivasa Rao; Guanghou Shui; Anne K. Bendt; Kevin Pethe; Thomas Dick; Markus R. Wenk

Mycobacteria store triacylglycerols (TGs) under various stress conditions, such as hypoxia, exposure to nitric oxide, and acidic environments. These stress conditions are known to induce nonreplicating persistence in mycobacteria. The importance of TG accumulation and utilization during regrowth is not clearly understood. Here we specifically determined the levels of accumulated TG and TG lipase activity in Mycobacterium bovis bacillus Calmette-Guerin (BCG) in various different physiological states (logarithmic growth, aerated stationary phase, hypoxia-induced dormancy, and regrowth from dormancy). We found extensive accumulation and degradation of TGs in the bacilli during entry into and exit from hypoxia-induced dormancy, respectively. These processes are accompanied by dynamic appearance and disappearance of intracellular TG lipid particles. The reduction in TG levels coincides with an increase in cellular TG lipase activity in the regrowing bacilli. Tetrahydrolipstatin, an inhibitor of TG lipases, reduces total lipase activity, prevents breakdown of TGs, and blocks the growth of mycobacteria upon resuscitation with air. Our results demonstrate that utilization of TGs is essential for the regrowth of mycobacteria during their exit from the hypoxic nonreplicating state.


Journal of Lipid Research | 2007

Sensitive profiling of chemically diverse bioactive lipids

Guanghou Shui; Anne K. Bendt; Kevin Pethe; Thomas Dick; Markus R. Wenk

Here, we present an improved method for sensitive profiling of lipids in a single high-performance liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry experiment. The approach consists of i) sensitive isocratic elution, which takes advantage of C18 column material that is resistant to increased pH values induced by piperidine, ii) chemometric alignment of mass spectra followed by differential analysis of ion intensities, and iii) semiquantitative analysis of extracted ion chromatograms of interest. A key advantage of this method is its wide applicability to extracts that harbor lipids of considerable chemical complexity. The method allows qualitative and semiquantitative analysis of fatty acyls, glycerophospholipids (such as glycerophosphatidylinositols, glycerophosphatidylserines, and glycerophosphatidylcholines in brain extracts), phosphatidylinositol mannosides, acylated glycerophospholipids, sphingolipids (including ceramides and gangliosides in brain extracts), and, for the first time with ESI, prenols and mycolic acids (MAs). MAs are targets in antimycobacterial therapy, and they play an important immunomodulatory role during host-pathogen interactions. We compared high-resolution mass spectra of MAs derived from Mycobacterium bovis Bacille Camette-Guérin during entry into nonreplicative conditions induced by oxygen deprivation (hypoxic dormancy). Although the overall composition is not drastically altered, there are pronounced differences in individual MAs. α-MAs accumulate during entry into dormancy, whereas a subpopulation of keto-MAs is almost entirely eliminated. This effect is reversed upon resuscitation of dormant mycobacteria. These results provide detailed chemical information with relevance to drug development and immunobiology of mycobacteria.

Collaboration


Dive into the Kevin Pethe's collaboration.

Top Co-Authors

Avatar

Sylvie Alonso

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Lay Teng Ang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Thomas Dick

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Vanessa Hui Qi Koh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Anne K. Bendt

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Markus R. Wenk

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Wenwei Lin

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvie Alonso

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge