Kevin W. Lewis
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kevin W. Lewis.
Geophysical Research Letters | 2008
Alexander G. Hayes; Oded Aharonson; Philip S. Callahan; Charles Elachi; Yonggyu Gim; R. Kirk; Kevin W. Lewis; Rosaly M. C. Lopes; Ralph D. Lorenz; Jonathan I. Lunine; K. L. Mitchell; Giuseppe Mitri; Ellen R. Stofan; S. D. Wall
from <10 to more than 100,000 km 2 . The size and location of lakes provide constraints on parameters associated with subsurface transport. Using porous media properties inferred from Huygens probe observations, timescales for flow into and out of observed lakes are shown to be in the tens of years, similar to seasonal cycles. Derived timescales are compared to the time between collocated SAR observations in order to considertheroleofsubsurfacetransportinTitan’shydrologic cycle. Citation: Hayes, A., et al. (2008), Hydrocarbon lakes on Titan: Distribution and interaction with a porous regolith,Geophys. Res. Lett., 35, L09204, doi:10.1029/2008GL033409.
Science | 2008
Kevin W. Lewis; Oded Aharonson; John P. Grotzinger; Randolph L. Kirk; Alfred S. McEwen; Terry Ann Suer
Widespread sedimentary rocks on Mars preserve evidence of surface conditions different from the modern cold and dry environment, although it is unknown how long conditions favorable to deposition persisted. We used 1-meter stereo topographic maps to demonstrate the presence of rhythmic bedding at several outcrops in the Arabia Terra region. Repeating beds are ∼10 meters thick, and one site contains hundreds of meters of strata bundled into larger units at a ∼10:1 thickness ratio. This repetition likely points to cyclicity in environmental conditions, possibly as a result of astronomical forcing. If deposition were forced by orbital variation, the rocks may have been deposited over tens of millions of years.
Journal of Geophysical Research | 2008
Raymond E. Arvidson; Steven W. Ruff; Richard V. Morris; D. W. Ming; Larry S. Crumpler; Albert S. Yen; Steven W. Squyres; R. Sullivan; James F. Bell; Nathalie A. Cabrol; B. C. Clark; William H. Farrand; R. Gellert; R. N. Greenberger; J. A. Grant; Edward A. Guinness; K. E. Herkenhoff; Joel A. Hurowitz; James Richard Johnson; G. Klingelhöfer; Kevin W. Lewis; R. Li; Timothy J. McCoy; Jeffrey Edward Moersch; Harry Y. McSween; Scott L. Murchie; Mariek E. Schmidt; Christian Schröder; Aihui H. Wang; Sandra Margot Wiseman
This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirits data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiters Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4–4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirits data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirits data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.
Journal of Geophysical Research | 2006
Kevin W. Lewis; Oded Aharonson
The eroded remains of a fluvial distributary network in Eberswalde crater are uniquely well preserved among similar structures on Mars. A quantitative analysis of the exposed stratigraphy has been performed to investigate the internal structure of the deposit. Using topographic information derived from stereo pairs of high-resolution Mars Orbiter Camera images, we have for the first time quantified the orientation of individual layers exposed along the distal end of the distributary network. In combination with topographic data from the Mars Orbiter Laser Altimeter, we have examined plausible scenarios for the formation of this structure. We find that the evidence is inconsistent with formation both as an alluvial fan and as a progradational delta. Instead, we find that an aggradational delta best fits the observed characteristics of the channel network and the Eberswalde basin as a whole. We conclude that the delta likely formed not in a stable long-lived lake but over the course of a small number of shorter lacustrine episodes, which were not sustained at equilibrium conditions.
Journal of Geophysical Research | 2008
Kevin W. Lewis; Oded Aharonson; John P. Grotzinger; Steven W. Squyres; James F. Bell; Larry S. Crumpler; Mariek E. Schmidt
Home Plate is a layered plateau observed by the Mars Exploration Rover Spirit in the Columbia Hills of Gusev Crater. The structure is roughly 80 m in diameter, and the raised margin exposes a stratigraphic section roughly 1.5 m in thickness. Previous work has proposed a pyroclastic surge, possibly followed by aeolian reworking of the ash, for the depositional origin for these beds. We have performed a quantitative analysis of the structure, stratigraphy, and sedimentology at this location. Our results are consistent with an explosive volcaniclastic origin for the layered sediments. Analysis of bedding orientations over half of the circumference of Home Plate reveals a radially inward dipping structure, consistent with deposition in the volcanic vent, or topographic draping of a preexisting depression. Detailed observations of the sedimentology show that grain sorting varies significantly between outcrops on the east and west sides. Observations on the western side show a well-sorted population of sand sized grains which comprise the bedrock, while the eastern margin shows a wider range of grain sizes, including some coarse granules. These observations are consistent with primary deposition by a pyroclastic surge. However, aeolian reworking of the upper stratigraphic unit is not ruled out. Identification of explosive volcanic products on Mars may implicate magma interaction with subsurface hydrologic reservoirs in the past.
Geology | 2006
John P. Grotzinger; James F. Bell; K. E. Herkenhoff; James Richard Johnson; Andrew H. Knoll; Elaina McCartney; Scott M. McLennan; Joannah M. Metz; J. M. Moore; S. W. Squyres; R. Sullivan; O. Ahronson; Raymond E. Arvidson; B. L. Joliff; M. P. Golombek; Kevin W. Lewis; T. J. Parker; Jason M. Soderblom
New observations at Erebus crater (Olympia outcrop) by the Mars Exploration Rover Opportunity between sols 671 and 735 (a sol is a martian day) indicate that a diverse suite of primary and penecontemporaneous sedimentary structures is preserved in sulfate-rich bedrock. Centimeter-scale trough (festoon) cross-lamination is abundant, and is better expressed and thicker than previously described examples. Postdepositional shrinkage cracks in the same outcrop are interpreted to have formed in response to desiccation. Considered collectively, this suite of sedimentary structures provides strong support for the involvement of liquid water during accumulation of sedimentary rocks at Meridiani Planum.
Journal of Geophysical Research | 2008
Chris H. Okubo; Kevin W. Lewis; Alfred S. McEwen; Randolph L. Kirk
High-resolution topography generated from stereo HiRISE (High-Resolution Imaging Science Experiment) imagery reveals the meter-scale structure of interior layered deposits (ILD) in southwest Candor Chasma. This study seeks to determine the age of the local ILD relative to any normal faults that can be attributed to chasma formation. The study area is located near the contact of these ILD and the wall rock and is in an area where chasma-forming normal faults have been proposed. We find that while normal faults are found in the study area, these faults are not sufficiently large nor appropriately located or oriented to accommodate the roughly northeast-southwest extension that is required for normal faults that can be attributed to chasma formation. Additionally, bedding exposed in the local ILD generally dips toward the center of Candor Chasma, consistent with sediment deposition in a preexisting basin. Further, pit craters of Tithonia Catena, presumed to predate or be contemporaneous with the formation of west Candor Chasma, do not cut into the ILD within the study area. These independent lines of evidence support a postchasma age for the ILD exposed within the study area. Chasma-related normal faults may exist within these ILD at depth but are not exposed at the surface. Approximately 2 km of conformable stratigraphy is exposed in the study area, and therefore at least several kilometers of the local ILD were deposited subsequent to any chasma-related normal faulting that may have occurred in this part of Candor Chasma.
international geoscience and remote sensing symposium | 2008
F. Ayoub; Sébastien Leprince; Renaud Binet; Kevin W. Lewis; Oded Aharonson; Jean-Philippe Avouac
Applications such as change detection and digital elevation model extraction from optical images require a rigorous modeling of the acquisition geometry. We show that the unrecorded satellite jitter during image acquisition, and the uncertainties on the CCD arrays geometry are the current major limiting factors for applications requiring high accuracy. These artifacts are identified and quantified on several optical satellites, i.e., SPOT, ASTER, QuickBird, and HiRISE.
Journal of Geophysical Research | 2011
Larry S. Crumpler; Raymond E. Arvidson; S. W. Squyres; Timothy J. McCoy; Aileen Yingst; Steven W. Ruff; William H. Farrand; Y. McSween; M. Powell; D. W. Ming; Richard V. Morris; James F. Bell; J. Grant; Ronald Greeley; David J. DesMarais; Mariek E. Schmidt; Nathalie A. Cabrol; A.F.C. Haldemann; Kevin W. Lewis; Alian Wang; Christian Schröder; Diana L. Blaney; Barbara A. Cohen; Albert S. Yen; Jack D. Farmer; Ralf Gellert; Edward A. Guinness; K. E. Herkenhoff; J. R. Johnson; G. Klingelhöfer
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiters High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
Science | 2007
Steven W. Squyres; Oded Aharonson; Benton C. Clark; Barbara A. Cohen; Larry S. Crumpler; P. A. de Souza; William H. Farrand; R. Gellert; John A. Grant; John P. Grotzinger; A. F. C. Haldemann; James Richard Johnson; G. Klingelhöfer; Kevin W. Lewis; R. Li; Timothy J. McCoy; Alfred S. McEwen; Harry Y. McSween; D. W. Ming; J. M. Moore; Richard V. Morris; T. J. Parker; J. W. Rice; Steven W. Ruff; Mariek E. Schmidt; C. Schröder; L. A. Soderblom; Albert S. Yen