Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Khalid A. Mohamedali is active.

Publication


Featured researches published by Khalid A. Mohamedali.


The Journal of Nuclear Medicine | 2008

Imaging of VEGF receptor in a rat myocardial infarction model using PET.

Martin Rodriguez-Porcel; Weibo Cai; Olivier Gheysens; Jürgen K. Willmann; Kai Chen; Hui Wang; Ian Y. Chen; Lina He; Joseph C. Wu; Zi Bo Li; Khalid A. Mohamedali; Se Hoon Kim; Michael G. Rosenblum; Xiaoyuan Chen; Sanjiv S. Gambhir

Myocardial infarction (MI) leads to left ventricular (LV) remodeling, which leads to the activation of growth factors such as vascular endothelial growth factor (VEGF). However, the kinetics of a growth factors receptor expression, such as VEGF, in the living subject has not yet been described. We have developed a PET tracer (64Cu-DOTA-VEGF121 [DOTA is 1,4,7,10-tetraazadodecane-N,N′,N″,N‴-tetraacetic acid]) to image VEGF receptor (VEGFR) expression after MI in the living subject. Methods: In Sprague–Dawley rats, MI was induced by ligation of the left coronary artery and confirmed by ultrasound (n = 8). To image and study the kinetics of VEGFRs, 64Cu-DOTA-VEGF121 PET scans were performed before MI induction (baseline) and on days 3, 10, 17, and 24 after MI. Sham-operated animals served as controls (n = 3). Results: Myocardial origin of the 64Cu-DOTA-VEGF121 signal was confirmed by CT coregistration and autoradiography. VEGFR specificity of the 64Cu-DOTA-VEGF121 probe was confirmed by in vivo use of a 64Cu-DOTA-VEGFmutant. Baseline myocardial uptake of 64Cu-DOTA-VEGF121 was minimal (0.30 ± 0.07 %ID/g [percentage injected dose per gram of tissue]); it increased significantly after MI (day 3, 0.97 ± 0.05 %ID/g; P < 0.05 vs. baseline) and remained elevated for 2 wk (up to day 17 after MI), after which time it returned to baseline levels. Conclusion: We demonstrate the feasibility of imaging VEGFRs in the myocardium. In summary, we imaged and described the kinetics of 64Cu-DOTA-VEGF121 uptake in a rat model of MI. Studies such as the one presented here will likely play a major role when studying pathophysiology and assessing therapies in different animal models of disease and, potentially, in patients.


Biomaterials | 2012

Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles

Fan Zhang; Xinglu Huang; Lei Zhu; Ning Guo; Gang Niu; Magdalena Swierczewska; Seulki Lee; Hong Xu; Andrew Y. Wang; Khalid A. Mohamedali; Michael G. Rosenblum; Guangming Lu; Xiaoyuan Chen

Noninvasive imaging techniques have been considered important strategies in the clinic to monitor tumor early response to therapy. In the present study, we applied RGD peptides conjugated to iron oxide nanoparticles (IONP-RGD) as contrast agents in magnetic resonance imaging (MRI) to noninvasively monitor the response of a vascular disrupting agent VEGF(121)/rGel in an orthotopic glioblastoma model. RGD peptides were firstly coupled to IONPs coated with a crosslinked PEGylated amphiphilic triblock copolymer. In vitro binding assays confirmed that cellular uptake of particles was mainly dependent on the interaction between RGD and integrin α(v)β(3) of human umbilical vein endothelial cells (HUVEC). The tumor targeting of IONP-RGD was observed in an orthotopic U87 glioblastoma model. Finally, noninvasive monitoring of the tumor response to VEGF(121)/rGel therapy at early stages of treatment was successfully accomplished using IONP-RGD as a contrast agent for MRI, a superior method over common anatomical approaches which are based on tumor size measurements. This preclinical study can accelerate anticancer drug development and promote clinical translation of nanoprobes.


Journal of Investigative Dermatology | 2013

The TWEAK Receptor Fn14 Is a Therapeutic Target in Melanoma: Immunotoxins Targeting Fn14 Receptor for Malignant Melanoma Treatment

Hong Zhou; Suhendan Ekmekcioglu; John W. Marks; Khalid A. Mohamedali; Kaushal Asrani; Keeley K. Phillips; Sharron A.N. Brown; Emily Cheng; Michele B. Weiss; Walter N. Hittelman; Nhan L. Tran; Hideo Yagita; Jeffrey A. Winkles; Michael G. Rosenblum

Fn14, the cell surface receptor for TWEAK, is over-expressed in various human solid tumor types and can be a negative prognostic indicator. We detected Fn14 expression in ~60% of the melanoma cell lines we tested, including both B-Raf WT and B-RafV600E lines. Tumor tissue microarray analysis indicated that Fn14 expression was low in normal skin but elevated in 173/190 (92%) of primary melanoma specimens and in 86/150 (58%) of melanoma metastases tested. We generated both a chemical conjugate composed of the rGel toxin and the anti-Fn14 antibody ITEM-4 (designated ITEM4-rGel) and a humanized, dimeric single-chain antibody of ITEM-4 fused to rGel (designated hSGZ). Both ITEM4-rGel and hSGZ were highly cytotoxic to a panel of different melanoma cell lines. Mechanistic studies showed that both immunotoxins induced melanoma cell necrosis. Also, these immunotoxins could up-regulate the cellular expression of Fn14 and trigger cell signaling events similar to the Fn14 ligand TWEAK. Finally, treatment of mice bearing human melanoma MDA-MB-435 xenografts with either ITEM4-rGel or hSGZ showed significant tumor growth inhibition compared to controls. We conclude that Fn14 is a novel therapeutic target in melanoma and the hSGZ construct appears to warrant further development as a novel therapeutic agent against Fn14-positive melanoma.


Investigative Radiology | 2011

Sensitive angiogenesis imaging of orthotopic bladder tumors in mice using a selective magnetic resonance imaging contrast agent containing VEGF121/rGel.

Eun Jin Cho; Jaemoon Yang; Khalid A. Mohamedali; Eun Kyung Lim; Eun Jung Kim; Carol J. Farhangfar; Jin Suck Suh; Seungjoo Haam; Michael G. Rosenblum; Yong Min Huh

Objectives:To investigate the efficiency of magnetic resonance imaging (MRI) contrast agents employing vascular endothelial growth factor (VEGF121)/rGel conjugated MnFe2O4 nanocrystals for imaging of neovasculature using a bladder tumor model. Materials and Methods:VEGF121/rGel was conjugated to MnFe2O4 nanoparticles (MNPs). The targeting efficiency and detection capability of the VEGF121/rGel-MNPs were investigated in both KDR-deficient (253JB-V) and KDR-overexpressing (PAE/KDR) cells using MRI. The internalization of VEGF121/rGel-MNPs into cells was confirmed by electron microscopy. Their phosphorylation ability and cytotoxicity were compared with unconjugated VEGF121/rGel. The orthotopic tumor mice were established by implanting low KDR-expressing 253JB-V cells into the bladder dome. After tail-vein injection of VEGF121/rGel-MNPs, the MR signal enhancement of intratumoral vessels by VEGF121/rGel-MNPs was observed and inhibition test using VEGF121 was also conducted. Ex vivo MR imaging of tumor tissue, and a fluorescence immunostaining study was also performed. Results:The water-soluble VEGF121/rGel-MNPs (44.5 ± 1.2 nm) were stably suspended in the biologic media and exhibited a high relaxivity coefficient (423 mM−1s−1). They demonstrated sufficient targeting capability against KDR-overexpressing PAE/KDR cells, as confirmed by dose-dependent MR images and VEGF121 inhibition tests. The phosphorylation activity of KDR and cytotoxicity of VEGF121/rGel-MNPs were evaluated. VEGF121/rGel-MNPs successfully targeted the tumor and provided accurate anatomic details through (i) acquisition of clear neoangiogenic vascular distributions and (ii) obvious enhancement of the MR signal in T2*-weighted images. Immunostaining and blocking studies demonstrated the specific targeting ability of VEGF121/rGel-MNPs toward intratumoral angiogenesis. Conclusions:Synthesized VEGF121/rGel-MNPs as targeted MR imaging contrast agents can be specifically delivered to tumors and bind to KDR-expressing angiogenic tumor vessels.


Cancer Research | 2006

Inhibition of Prostate Tumor Growth and Bone Remodeling by the Vascular Targeting Agent VEGF121/rGel

Khalid A. Mohamedali; Ann Poblenz; Charles Sikes; Nora M. Navone; Philip E. Thorpe; Bryant G. Darnay; Michael G. Rosenblum

The pathophysiology of tumor growth following skeletal metastases and the poor response of this type of lesion to therapeutic intervention remains incompletely understood. Vascular endothelial growth factor (VEGF)-A and its receptors play a role in both osteoclastogenesis and tumor growth. Systemic (i.v.) treatment of nude mice bearing intrafemoral prostate (PC-3) tumors with the vascular ablative agent VEGF(121)/recombinant gelonin (rGel) strongly inhibited tumor growth. Fifty percent of treated animals had complete regression of bone tumors with no development of lytic bone lesions. Immunohistochemical analysis showed that VEGF(121)/rGel treatment suppressed tumor-mediated osteoclastogenesis in vivo. In vitro treatment of murine osteoclast precursors, both cell line (RAW264.7) and bone marrow-derived monocytes (BMM), revealed that VEGF(121)/rGel was selectively cytotoxic to osteoclast precursor cells rather than mature osteoclasts. VEGF(121)/rGel cytotoxicity was mediated by Flt-1, which was down-regulated during osteoclast differentiation. Analysis by flow cytometry and reverse transcription-PCR showed that both BMM and RAW264.7 cells display high levels of Flt-1 but low levels of Flk-1. Internalization of VEGF(121)/rGel into osteoclast precursor cells was suppressed by pretreatment with an Flt-1 neutralizing antibody or by placenta growth factor but not with an Flk-1 neutralizing antibody. Thus, VEGF(121)/rGel inhibits osteoclast maturation in vivo and it seems that this process is important in the resulting suppression of skeletal osteolytic lesions. This is a novel and unique mechanism of action for this class of agents and suggests a potentially new approach for treatment or prevention of tumor growth in bone.


Molecular Cancer Therapeutics | 2013

Construction and Characterization of Novel, Completely Human Serine Protease Therapeutics Targeting Her2/neu

Yu Cao; Khalid A. Mohamedali; John W. Marks; Lawrence H. Cheung; Walter N. Hittelman; Michael G. Rosenblum

Immunotoxins containing bacterial or plant toxins have shown promise in cancer-targeted therapy, but their long-term clinical use may be hampered by vascular leak syndrome and immunogenicity of the toxin. We incorporated human granzyme B (GrB) as an effector and generated completely human chimeric fusion proteins containing the humanized anti-Her2/neu single-chain antibody 4D5 (designated GrB/4D5). Introduction of a pH-sensitive fusogenic peptide (designated GrB/4D5/26) resulted in comparatively greater specific cytotoxicity although both constructs showed similar affinity to Her2/neu–positive tumor cells. Compared with GrB/4D5, GrB/4D5/26 showed enhanced and long-lasting cellular uptake and improved delivery of GrB to the cytosol of target cells. Treatment with nanomolar concentrations of GrB/4D5/26 resulted in specific cytotoxicity, induction of apoptosis, and efficient downregulation of PI3K/Akt and Ras/ERK pathways. The endogenous presence of the GrB proteinase inhibitor 9 did not impact the response of cells to the fusion construct. Surprisingly, tumor cells resistant to lapatinib or Herceptin, and cells expressing MDR-1 resistant to chemotherapeutic agents showed no cross-resistance to the GrB-based fusion proteins. Administration (intravenous, tail vein) of GrB/4D5/26 to mice bearing BT474 M1 breast tumors resulted in significant tumor suppression. In addition, tumor tissue excised from GrB/4D5/26–treated mice showed excellent delivery of GrB to tumors and a dramatic induction of apoptosis compared with saline treatment. This study clearly showed that the completely human, functionalized GrB construct can effectively target Her2/neu–expressing cells and displays impressive in vitro and in vivo activity. This construct should be evaluated further for clinical use. Mol Cancer Ther; 12(6); 979–91. ©2013 AACR.


Molecular Pharmaceutics | 2011

Multiplexed PET Probes for Imaging Breast Cancer Early Response to VEGF121/rGel Treatment

Min Yang; Haokao Gao; Xilin Sun; Yongjun Yan; Qimeng Quan; Wendy Zhang; Khalid A. Mohamedali; Michael G. Rosenblum; Gang Niu; Xiaoyuan Chen

In this study, we applied multiplexed positron emission tomography (PET) probes to monitor glucose metabolism, cellular proliferation, tumor hypoxia and angiogenesis during VEGF₁₂₁/rGel therapy of breast cancer. Two doses of 12 mg/kg VEGF₁₂₁/rGel, administered intraperitoneally, resulted in initial delay of tumor growth, but the growth resumed 4 days after tumor treatment was stopped. The average tumor growth rate expressed as V/V(0), were 1.11 ± 0.07, 1.21 ± 0.10, 1.58 ± 0.36 and 2.64 ± 0.72 at days 1, 3, 7 and 14, respectively. Meanwhile, the VEGF₁₂₁/rGel treatment group showed V/V₀ ratios of 1.04 ± 0.06, 1.05 ± 0.11, 1.09 ± 0.17 and 1.86 ± 0.36 at days 1, 3, 7 and 14, respectively. VEGF₁₂₁/rGel treatment led to significantly decreased uptake of ¹⁸F-FPPRGD2 at day 1 (24.0 ± 8.8%, p < 0.05) and day 3 (36.3 ± 9.2%, p < 0.01), relative to the baseline, which slowly recovered to the baseline at day 14. ¹⁸F-FMISO uptake was increased in the treated tumors at day 1 (23.9 ± 15.7%, p < 0.05) and day 3 (51.4 ± 29.4%, p < 0.01), as compared to the control group. At days 7 and 14, ¹⁸F-FMISO uptake restored to the baseline level. The relative reductions in FLT uptake in treated tumors were approximately 13.0 ± 4.5% at day 1 and 25.0 ± 4.4% (p < 0.01) at day 3. No significant change of ¹⁸F-FDG uptake was observed in VEGF₁₂₁/rGel treated tumors, compared with the control group. The imaging findings were supported by ex vivo analysis of related biomarkers. Overall, longitudinal imaging studies with 4 PET tracers demonstrated the feasibility and usefulness of multiplexed probes for quantitative measurement of antitumor effects of VEGF₁₂₁/rGel at the early stage of treatment. This preclinical study should be helpful in accelerating anticancer drug development and promoting the clinical translation of molecular imaging.


Clinical Cancer Research | 2011

Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature

Khalid A. Mohamedali; Zhi Gang Li; Michael W. Starbuck; Xinhai Wan; Jun Yang; Se Hoon Kim; Wendy Zhang; Michael G. Rosenblum; Nora M. Navone

Purpose: A hallmark of prostate cancer (PCa) progression is the development of osteoblastic bone metastases, which respond poorly to available therapies. We previously reported that VEGF121/rGel targets osteoclast precursors and tumor neovasculature. Here we tested the hypothesis that targeting nontumor cells expressing these receptors can inhibit tumor progression in a clinically relevant model of osteoblastic PCa. Experimental Design: Cells from MDA PCa 118b, a PCa xenograft obtained from a bone metastasis in a patient with castrate-resistant PCa, were injected into the femurs of mice. Osteoblastic progression was monitored following systemic administration of VEGF121/rGel. Results: VEGF121/rGel was cytotoxic in vitro to osteoblast precursor cells. This cytotoxicity was specific as VEGF121/rGel internalization into osteoblasts was VEGF121 receptor driven. Furthermore, VEGF121/rGel significantly inhibited PCa-induced bone formation in a mouse calvaria culture assay. In vivo, VEGF121/rGel significantly inhibited the osteoblastic progression of PCa cells in the femurs of nude mice. Microcomputed tomographic analysis revealed that VEGF121/rGel restored the bone volume fraction of tumor-bearing femurs to values similar to those of the contralateral (non–tumor-bearing) femurs. VEGF121/rGel significantly reduced the number of tumor-associated osteoclasts but did not change the numbers of peritumoral osteoblasts. Importantly, VEGF121/rGel-treated mice had significantly less tumor burden than control mice. Our results thus indicate that VEGF121/rGel inhibits osteoblastic tumor progression by targeting angiogenesis, osteoclastogenesis, and bone formation. Conclusions: Targeting VEGF receptor (VEGFR)-1- or VEGFR-2–expressing cells is effective in controlling the osteoblastic progression of PCa in bone. These findings provide the basis for an effective multitargeted approach for metastatic PCa. Clin Cancer Res; 17(8); 2328–38. ©2011 AACR.


Journal of Controlled Release | 2014

Photochemical internalization augments tumor vascular cytotoxicity and specificity of VEGF121/rGel fusion toxin

Anette Weyergang; Lawrence H. Cheung; Michael G. Rosenblum; Khalid A. Mohamedali; Qian Peng; Johannes Waltenberger; Kristian Berg

Vascular targeting for cancer is increasingly recognized as a therapeutic strategy although the lack of objective responses and the development of resistance are major limitations for clinically-available drugs. Endothelial targeted toxins exert increased toxicity compared to antiangiogenic drugs and may therefore overcome these limitations. The specificity and toxicity of targeted toxins may be increased by utilization of a drug delivery system which provides selective release of the targeted toxins in the target cells. Photochemical internalization (PCI) is a non-invasive modality which causes translocation into the cytosol of agents that are trapped in endosomes. This study describes the first use of PCI in combination with a recombinant fusion toxin targeting tumor vasculature. Endothelial cells bearing VEGFR2 treated with VEGF121/rGel showed dramatic enhancement of toxicity after PCI utilizing the photosensitizer TPCS2a (Amphinex®). We compared the PCI of VEGF121/rGel to that of bleomycin which is currently under clinical evaluation. The VEGFR2 specificity of VEGF121/rGel was shown to be preserved by the PCI treatment. PCI of VEGF121/rGel was further shown to induce vascular collapse and edema in the invasive areas of CT26.CL25 colon carcinoma tumors as shown by CD31 IHC. Antitumor effects, as assessed by tumor growth delay were found for PCI of VEGF121/rGel and PCI of bleomycin with cure rates of 40% and 33% respectively. PCI of VEGF121/rGel was, however, better tolerated compared to PCI of bleomycin. Thus, PCI of vascular targeted toxins provides higher specificity and increased tolerability compared to PCI of bleomycin and may represent an interesting clinical future for the PCI technology.


Methods in Enzymology | 2012

Cell-targeting fusion constructs containing recombinant gelonin

Mi Ae Lyu; Yu Cao; Khalid A. Mohamedali; Michael G. Rosenblum

Therapeutic agents capable of targeting tumor cells present as established tumors and micrometastases have already demonstrated their potential in clinical trials. Immunotoxins targeting hematological malignancies and solid tumors have additionally demonstrated excellent clinical activity. This review focuses on our design and characterization studies of constructs composed of recombinant gelonin toxin fused to either growth factors or single-chain antibodies targeting solid tumor cells, tumor vasculature or hematological malignancies. These agents demonstrate cytotoxicity at nanomolar or sub-nanomolar levels. All of these constructs display impressive selectivity and specificity for antigen-bearing target cells in vitro and in vivo and are excellent clinical trial candidates.

Collaboration


Dive into the Khalid A. Mohamedali's collaboration.

Top Co-Authors

Avatar

Michael G. Rosenblum

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence H. Cheung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Walter N. Hittelman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yu Cao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiaoyuan Chen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip E. Thorpe

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gang Niu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hong Zhou

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge