Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paula M. Loria is active.

Publication


Featured researches published by Paula M. Loria.


Journal of Medicinal Chemistry | 2015

Short Hydrophobic Peptides with Cyclic Constraints Are Potent Glucagon-like Peptide-1 Receptor (GLP-1R) Agonists.

Huy N. Hoang; K Song; Timothy A. Hill; David R. Derksen; David J. Edmonds; W.M. Kok; Chris Limberakis; Spiros Liras; Paula M. Loria; Mascitti; Alan M. Mathiowetz; Justin M. Mitchell; David W. Piotrowski; David A. Price; Robert Vernon Stanton; Jacky Y. Suen; Jane M. Withka; David A. Griffith; David P. Fairlie

Cyclic constraints are incorporated into an 11-residue analogue of the N-terminus of glucagon-like peptide-1 (GLP-1) to investigate effects of structure on agonist activity. Cyclization through linking side chains of residues 2 and 5 or 5 and 9 produced agonists at nM concentrations in a cAMP assay. 2D NMR and CD spectra revealed an N-terminal β-turn and a C-terminal helix that differentially influenced affinity and agonist potency. These structures can inform development of small molecule agonists of the GLP-1 receptor to treat type 2 diabetes.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2009

Myostatin Inhibition Enhances the Effects of Exercise on Performance and Metabolic Outcomes in Aged Mice

Nathan K. LeBrasseur; Teresa M. Schelhorn; Barbara L. Bernardo; Patricia G. Cosgrove; Paula M. Loria; Thomas A. Brown

The objective of this study was to examine the effects of short-term exercise training, myostatin inhibition (PF-354), and exercise+PF-354, all relative to a vehicle control, on performance and metabolic measures in 24-month-old mice. At study termination, PF-354-treated mice exhibited significantly greater muscle weights. Performance measures revealed that exercise+PF-354 increased treadmill running time and distance to exhaustion (more than twofold) and increased habitual activity. Measures of strength were not different; however, all treatment groups demonstrated more than 30% reductions in muscle fatigue. Metabolic measures showed that basal metabolic rates were higher in PF-354- and exercise+PF-354-treated mice, and exercise and exercise+PF-354 groups exhibited significantly greater insulin sensitivity. PF-354 was associated with decreased Smad3 phosphorylation and increased peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and, similar to exercise, decreased MuRF-1. The data suggest that the combination of exercise training and myostatin blockade may significantly improve physical function and whole-body metabolism in older individuals.


Science Translational Medicine | 2015

Developing predictive assays: The phenotypic screening “rule of 3”

Fabien Vincent; Paula M. Loria; Marko Pregel; Robert Stanton; Linda Kitching; Karl Nocka; Regis Doyonnas; Claire M. Steppan; Adam M. Gilbert; Thomas Schroeter; Marie-Claire Peakman

Not all phenotypic assays are created equal; critically evaluating the disease relevance of the assay system, stimulus, and readout can help design the most predictive ones. Phenotypic drug discovery approaches can positively affect the translation of preclinical findings to patients. However, not all phenotypic assays are created equal. A critical question then follows: What are the characteristics of the optimal assays? We analyze this question and propose three specific criteria related to the disease relevance of the assay—system, stimulus, and end point—to help design the most predictive phenotypic assays.


American Journal of Pathology | 2010

Antibody-Directed Myostatin Inhibition Improves Diaphragm Pathology in Young but not Adult Dystrophic mdx Mice

Kate T. Murphy; James G. Ryall; Sarah M. Snell; Lawrence Nair; René Koopman; Philip Albert Krasney; Chikwendu Ibebunjo; Kathryn S. Holden; Paula M. Loria; Christopher T. Salatto; Gordon S. Lynch

Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.


Journal of Translational Medicine | 2011

The use of plasma aldosterone and urinary sodium to potassium ratio as translatable quantitative biomarkers of mineralocorticoid receptor antagonism

Rena Eudy; Vaishali Sahasrabudhe; Kevin Sweeney; Meera Tugnait; Amanda King-Ahmad; Kristen Near; Paula M. Loria; Mary Ellen Banker; David W. Piotrowski; Carine M. Boustany-Kari

BackgroundAccumulating evidence supports the role of the mineralocorticoid receptor (MR) in the pathogenesis of diabetic nephropathy. These findings have generated renewed interest in novel MR antagonists with improved selectivity against other nuclear hormone receptors and a potentially reduced risk of hyperkalemia. Characterization of novel MR antagonists warrants establishing translatable biomarkers of activity at the MR receptor. We assessed the translatability of urinary sodium to potassium ratio (Na+/K+) and plasma aldosterone as biomarkers of MR antagonism using eplerenone (Inspra®), a commercially available MR antagonist. Further we utilized these biomarkers to demonstrate antagonism of MR by PF-03882845, a novel compound.MethodsThe effect of eplerenone and PF-03882845 on urinary Na+/K+ and plasma aldosterone were characterized in Sprague-Dawley rats and spontaneously hypertensive rats (SHR). Additionally, the effect of eplerenone on these biomarkers was determined in healthy volunteers. Drug exposure-response data were modeled to evaluate the translatability of these biomarkers from rats to humans.ResultsIn Sprague-Dawley rats, eplerenone elicited a rapid effect on urinary Na+/K+ yielding an EC50 that was within 5-fold of the functional in vitro IC50. More importantly, the effect of eplerenone on urinary Na+/K+ in healthy volunteers yielded an EC50 that was within 2-fold of the EC50 generated in Sprague-Dawley rats. Similarly, the potency of PF-03882845 in elevating urinary Na+/K+ in Sprague-Dawley rats was within 3-fold of its in vitro functional potency. The effect of MR antagonism on urinary Na+/K+ was not sustained chronically; thus we studied the effect of the compounds on plasma aldosterone following chronic dosing in SHR. Modeling of drug exposure-response data for both eplerenone and PF-03882845 yielded EC50 values that were within 2-fold of that estimated from modeling of drug exposure with changes in urinary sodium and potassium excretion. Importantly, similar unbound concentrations of eplerenone in humans and SHR rats yielded the same magnitude of elevations in aldosterone, indicating a good translatability from rat to human.ConclusionsUrinary Na+/K+ and plasma aldosterone appear to be translatable biomarkers of MR antagonism following administration of single or multiple doses of compound, respectively.Trial RegistrationFor clinical study reference EE3-96-02-004, this study was completed in 1996 and falls out scope for disclosure requirements.Clinical study reference A6141115: http://clinicaltrials.gov, http://NIHclinicaltrails.gov; NCTID: NCT00990223


ACS Medicinal Chemistry Letters | 2014

Discovery of PF-5190457, a Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate

Samit Kumar Bhattacharya; Kim M. Andrews; Ramsay E. Beveridge; Kimberly O'keefe Cameron; Chiliu Chen; Matthew Dunn; Dilinie P. Fernando; Hua Gao; David Hepworth; V. Margaret Jackson; Vishal Khot; Jimmy Kong; Rachel Kosa; Kimberly Lapham; Paula M. Loria; Allyn T. Londregan; Kim F. McClure; Suvi T. M. Orr; Jigna Patel; Colin R. Rose; James Saenz; Ingrid A. Stock; Gregory Storer; Maria A. Vanvolkenburg; Derek Vrieze; Guoqiang Wang; Jun Xiao; Yingxin Zhang

The identification of potent, highly selective orally bioavailable ghrelin receptor inverse agonists from a spiro-azetidino-piperidine series is described. Examples from this series have promising in vivo pharmacokinetics and increase glucose-stimulated insulin secretion in human whole and dispersed islets. A physicochemistry-based strategy to increase lipophilic efficiency for ghrelin receptor potency and retain low clearance and satisfactory permeability while reducing off-target pharmacology led to the discovery of 16h. Compound 16h has a superior balance of ghrelin receptor pharmacology and off-target selectivity. On the basis of its promising pharmacological and safety profile, 16h was advanced to human clinical trials.


Frontiers in Pharmacology | 2013

PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy

Stephen J. Orena; Tristan S. Maurer; Li She; Rena Eudy; Vincent Bernardo; Darla Dash; Paula M. Loria; Mary Ellen Banker; Meera Tugnait; Carlin Okerberg; Jessie Qian; Carine M. Boustany-Kari

The mineralocorticoid receptor (MR) antagonists PF-03882845 and eplerenone were evaluated for renal protection against aldosterone-mediated renal disease in uninephrectomized Sprague-Dawley (SD) rats maintained on a high salt diet and receiving aldosterone by osmotic mini-pump for 27 days. Serum K+ and the urinary albumin to creatinine ratio (UACR) were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro-fibrotic genes relative to sham-operated controls not receiving aldosterone. While both PF-03882845 and eplerenone elevated serum K+ levels with similar potencies, PF-03882845 was more potent than eplerenone in suppressing the rise in UACR. PF-03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID). All doses of PF-03882845 suppressed aldosterone-induced increases in collagen IV, transforming growth factor-β 1 (Tgf-β 1), interleukin-6 (Il-6), intermolecular adhesion molecule-1 (Icam-1) and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI), calculated as the ratio of the EC50 for increasing serum K+ to the EC50 for UACR lowering, was 83.8 for PF-03882845 and 1.47 for eplerenone. Thus, the TI of PF-03882845 against hyperkalemia was 57-fold superior to that of eplerenone indicating that PF-03882845 may present significantly less risk for hyperkalemia compared to eplerenone.


Scientific Reports | 2015

Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5)

Kim Huard; Janice A. Brown; Jessica E. C. Jones; Shawn Cabral; Kentaro Futatsugi; Matthew Gorgoglione; Adhiraj Lanba; Nicholas B. Vera; Yimin Zhu; Qingyun Yan; Yingjiang Zhou; Cecile Vernochet; Keith Riccardi; Angela Wolford; David Pirman; Mark Niosi; Gary E. Aspnes; Michael Herr; Nathan E. Genung; Thomas V. Magee; Daniel P. Uccello; Paula M. Loria; Li Di; James R. Gosset; David Hepworth; Timothy P. Rolph; Jeffrey A. Pfefferkorn; Derek M. Erion

Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.


Journal of Medicinal Chemistry | 2014

Identification of (R)-6-(1-(4-cyano-3-methylphenyl)-5-cyclopentyl-4,5-dihydro-1H-pyrazol-3-yl)-2-methoxynicotinic acid, a highly potent and selective nonsteroidal mineralocorticoid receptor antagonist.

Agustin Casimiro-Garcia; David W. Piotrowski; Catherine M. Ambler; Graciela B. Arhancet; Mary Ellen Banker; Tereece Banks; Carine M. Boustany-Kari; Cuiman Cai; Xiangyang Chen; Rena Eudy; David Hepworth; Catherine A. Hulford; Sandra M. Jennings; Paula M. Loria; Marvin J. Meyers; Donna N. Petersen; Neil Raheja; Matthew F. Sammons; Li She; Kun Song; Derek Vrieze; Liuqing Wei

A novel series of nonsteroidal mineralocorticoid receptor (MR) antagonists identified as part of our strategy to follow up on the clinical candidate PF-03882845 (2) is reported. Optimization departed from the previously described pyrazoline 3a and focused on improving the selectivity for MR versus the progesterone receptor (PR) as an approach to avoid potential sex-hormone-related adverse effects and improving biopharmaceutical properties. From this effort, (R)-14c was identified as a potent nonsteroidal MR antagonist (IC50 = 4.5 nM) with higher than 500-fold selectivity versus PR and other related nuclear hormone receptors, with improved solubility as compared to 2 and pharmacokinetic properties suitable for oral administration. (R)-14c was evaluated in vivo using the increase of urinary Na(+)/K(+) ratio in rat as a mechanism biomarker of MR antagonism. Treatment with (R)-14c by oral administration resulted in significant increases in urinary Na(+)/K(+) ratio and demonstrated this novel compound acts as an MR antagonist.


PLOS Biology | 2017

Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain.

Nathanael G. Lintner; Kim F. McClure; Donna N. Petersen; Allyn T. Londregan; David W. Piotrowski; Liuqing Wei; Jun Xiao; Michael W. Bolt; Paula M. Loria; Bruce Maguire; Kieran F. Geoghegan; Austin Huang; Tim Rolph; Spiros Liras; Jennifer A. Doudna; Robert Dullea; Jamie H. D. Cate

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts.

Collaboration


Dive into the Paula M. Loria's collaboration.

Researchain Logo
Decentralizing Knowledge