Kiren Yacqub-Usman
Keele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kiren Yacqub-Usman.
Endocrine-related Cancer | 2012
Cuong V. Duong; Richard D. Emes; Frank Wessely; Kiren Yacqub-Usman; Richard N. Clayton; William E. Farrell
DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.
Nature Reviews Endocrinology | 2012
Kiren Yacqub-Usman; Alan Richardson; Cuong V. Duong; Richard N. Clayton; William E. Farrell
Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D2-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D2 receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types—including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.
Endocrinology | 2011
Haneen Al-Azzawi; Kiren Yacqub-Usman; Alan Richardson; Leo J. Hofland; Richard N. Clayton; William E. Farrell
Dopamine (DA)-agonist targeting of the DA D(2) receptor (D2R) in prolactinomas is the first-line treatment choice for suppression of prolactin and induction of tumor shrinkage. Resistance to DA agonists seems to be related to receptor number. Using the MMQ and GH3 pituitary cell lines, that either do or do not express D2R, respectively, we explored the epigenetic profile associated with the presence or absence of D2R in these cells lines. These studies led us to explore pharmacological strategies designed to restore receptor expression and thereby potentially augment DA agonist-mediated apoptosis. We show in GH3 cells that the D2R harbors increased CpG island-associated methylation and enrichment for histone H3K27me3. Conversely, MMQ cells and normal pituitaries show enrichment for H3K9Ac and barely detectable H3K27me3. Coculture of GH3 cells with the demethylating agent zebularine and the histone deacetylase inhibitor trichostatin A was responsible for a decrease in CpG island methylation and enrichment for the histone H3K9Ac mark. In addition, challenge of GH3 cells with zebularine alone or coculture with both agents led to expression of endogenous D2R in these cells. Induced expression D2R in GH3 cells was associated with a significant increase in apoptosis indices to challenge with either DA or bromocriptine. Specificity of a receptor-mediated response was established in coincubations with specific D2R antagonist and siRNA approaches in GH3 cell and D2R expressing MMQ cell lines. These studies point to the potential efficacy of combined treatment with epigenetic drugs and DA agonists for the medical management of different pituitary tumor subtypes, resistant to conventional therapies.
Endocrinology | 2012
Kiren Yacqub-Usman; Cuong V. Duong; Richard N. Clayton; William E. Farrell
Bone morphogenetic protein (BMP)-4 is a key mediator of anterior pituitary organogenesis. However, through inappropriate expression patterns, BMP-4 is also pathogenic in a pituitary adenoma subtype-specific context. In these cases, increase or decrease in BMP-4 in lactotroph- and corticotroph-derived adenomas, respectively, is consistent with a bifunction role for this protein toward either promotion or inhibition of cell proliferation and hormone secretion. To gain insight into the aberrations responsible for differential expression, we examined BMP-4 transcript and protein expression patterns in the major adenomas subtypes. BMP-4 transcript and protein are differentially expressed and show increase in the majority of prolactinomas relative to normal pituitary, whereas the majority of other adenoma subtypes show reduced expression relative to both prolactinoma and normal pituitaries. Reduced expression of BMP-4 is not associated with change in CpG island methylation status. However, histone tail modifications are apparent, as enrichment for a modification associated with silent genes, H3K27me3, and depletion of a modification associated with active genes, H3K9Ac. In pituitary cell lines, reduced BMP-4 expression is also associated with similar histone tail modifications and contemporaneous increase in CpG island methylation. In these cells, coincubation with the demethylating agent zebularine and histone deacetylase inhibitor, trichostatin A, reversed epigenetic changes and restored expression of BMP-4. These studies show that, in contrast to prolactinomas, other adenoma subtypes show reduced expression of BMP-4 where epidrug induced reexpression, alone or in combination with conventional therapies, may offer new treatment strategies.
Pituitary | 2015
Mark O. Kitchen; Kiren Yacqub-Usman; Richard D. Emes; Alan Richardson; Richard N. Clayton; William E. Farrell
IntroductionTransgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression.ResultsIn a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression.ConclusionsThese findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.
Endocrinology | 2013
Kiren Yacqub-Usman; Cuong V. Duong; Richard N. Clayton; William E. Farrell
Retinoic acid (RA)-induced expression of bone morphogenetic protein-4 (BMP-4) inhibits in vitro and in vivo cell proliferation and ACTH synthesis in corticotroph-derived tumor cells. Reduced expression of BMP-4 in this adenoma subtype is associated with epigenomic silencing, and similar silencing mechanisms are also associated with the RA-responsive dopamine D2 receptor (D2R) in somatolactotroph cells. We now show that preincubation with the epidrugs zebularine and trichostatin A is obligate and permissive for RA-induced expression of the BMP-4 and the D2R genes in pituitary tumor cells. Combined epidrug challenges are associated with marginal reduction in CpG island methylation. However, significant change to histone tail modifications toward those associated with expression-competent genes is apparent, whereas RA challenge alone or in combined incubations does not have an impact on these modifications. Epidrug-mediated and RA-augmented expression of endogenous BMP-4 increased or decreased cell proliferation and colony-forming efficiency in GH3 and AtT-20 pituitary tumor cells, respectively, recapitulating recent reports of challenges of these cells with exogenous ligand. The specificity of the BMP-4-mediated effects was further supported by knock-down experiments of the BMP-4 antagonist noggin (small interfering RNA [siRNA]). Knock-down of noggin, in the absence and the presence of epidrugs, induced and augmented BMP-4 expression, respectively. In cell proliferation assays, challenge with either epidrugs or siRNA led to significant increase in cell numbers at the 72-hour time point; however, in siRNA-treated cells coincubated with epidrugs, a significant increase was apparent at the 48-hour time point. These studies show the potential of combined drug challenges as a treatment option, where epidrug renders silenced genes responsive to conventional therapeutic options.
Neuroendocrinology | 2013
Cuong V. Duong; Kiren Yacqub-Usman; Richard D. Emes; Richard N. Clayton; William E. Farrell
Background/Aims: In a genome-wide investigation we recently identified the EGF-containing fibulin-like extracellular matrix protein 1 gene, EFEMP1, as hypermethylated in growth hormone-secreting adenoma. Methods: In an independent cohort we determined expression of EFEMP1, CpG island methylation and histone tail modification status. The causal consequences of epigenetic modification were determined through epidrug-induced reversal and enforced EFEMP1 expression in GH3 cells. Results: The majority of adenomas, irrespective of subtype, show reduced EFEMP1 expression. However, epigenetic change, as determined by CpG island methylation, was not invariantly associated with decreased EFEMP1 expression. Conversely, chromatin immunoprecipitation assays revealed enrichment for modifications associated with either active or silenced genes in adenoma that did or did not express EFEMP1 respectively. In AtT-20 and GH3 cells a causal relationship between epigenetic silencing and expression of EFEMP1 was established where co-incubation with the epidrugs zebularine and TSA induced expression of EFEMP1 and concomitant histone tail modifications toward those associated with expressed genes. Enforced expression of EFEMP1 in GH3 cells was without effect on cell proliferation or apoptotic end-points, however inhibition of endogenous matrix metalloproteinase (MMP)-2 expression was apparent. Primary adenomas did not show this relationship, however a positive correlation was apparent with the MMP7 transcript and perhaps reflects cell or species differences. Conclusions: The protein product of the EFEMP1 gene, fibulin-3, is reported to impact on multiple pathways in a cell-specific context. Subtype-independent loss of EFEMP1 expression in the majority of primary adenomas should prompt more detailed investigation in this tumour type.
Bioscience Reports | 2017
Aytug Kizilors; Mark R. Pickard; Cathleen E Schulte; Kiren Yacqub-Usman; Nicola J. McCarthy; Shu-Uin Gan; David Darling; Joop Gaken; Gwyn T. Williams; Farzin Farzaneh
The E3 ubiquitin ligase RNF168 is a ring finger protein that has been previously identified to play an important regulatory role in the repair of double-strand DNA breaks. In the present study, an unbiased forward genetics functional screen in mouse granulocyte/macrophage progenitor cell line FDCP1 has identified E3 ubiquitin ligase RNF168 as a key regulator of cell survival and proliferation. Our data indicate that RNF168 is an important component of the mechanisms controlling cell fate, not only in human and mouse haematopoietic growth factor dependent cells, but also in the human breast epithelial cell line MCF-7. These observations therefore suggest that RNF168 provides a connection to key pathways controlling cell fate, potentially through interaction with PML nuclear bodies and/or epigenetic control of gene expression. Our study is the first to demonstrate a critical role for RNF168 in the mechanisms regulating cell proliferation and survival, in addition to its well-established role in DNA repair.
The Prostate | 2015
Kiren Yacqub-Usman; Mark R. Pickard; Gwyn T. Williams
Archive | 2014
Kiren Yacqub-Usman; Mark R. Pickard; Gwyn T. Williams