Kirk D. Rector
Los Alamos National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kirk D. Rector.
Energy and Environmental Science | 2011
Paul Langan; S. Gnanakaran; Kirk D. Rector; Norma H. Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel
A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of lignocellulosic biomass, this work has contributed towards demonstrated optimizations of existing pretreatment methods, and the emergence of new possible pretreatment strategies that remain to be fully developed.
Bioresource Technology | 2011
Marcel Lucas; Greg L. Wagner; Yoshiharu Nishiyama; Leif Hanson; Indira P. Samayam; Constance A. Schall; Paul Langan; Kirk D. Rector
Time-resolved autofluorescence, Raman microspectroscopy, and scanning microprobe X-ray diffraction were combined in order to characterize lignocellulosic biomass from poplar trees and how it changes during treatment with the ionic liquid 1-n-ethyl-3-methylimidazolium acetate (EMIMAC) at room temperature. The EMIMAC penetrates the cell wall from the lumen, swelling the cell wall by about a factor of two towards the empty lumen. However, the middle lamella remains unchanged, preventing the cell wall from swelling outwards. During this swelling, most of the cellulose microfibrils are solubilized but chain migration is restricted and a small percentage of microfibrils persist. When the EMIMAC is expelled, the cellulose recrystallizes as microfibrils of cellulose I. There is little change in the relative chemical composition of the cell wall after treatment. The action of EMIMAC on the poplar cell wall at room temperature would therefore appear to be a reversible swelling and a reversible decrystallization of the cell wall.
ACS Applied Materials & Interfaces | 2010
Marcel Lucas; Brian A. Macdonald; Gregory L. Wagner; Stephen A. Joyce; Kirk D. Rector
Lignocellulosic biomass offers economic and environmental advantages over corn starch for biofuels production. However, its fractionation currently requires energy-intensive pretreatments, due to the lignin chemical resistance and complex cell wall structure. Recently, ionic liquids have been used to dissolve biomass at high temperatures. In this study, thin sections of poplar wood were swollen by ionic liquid (1-ethyl-3-methylimidazolium acetate) pretreatment at room temperature. The samples contract when rinsed with deionized water. The controlled expansion and contraction of the wood structure can be used to incorporate enzymes and catalysts deep into the wood structure for improved pretreatments and accelerated cellulose hydrolysis. As a proof of concept, silver and gold nanoparticles of diameters ranging from 20 to 100 nm were incorporated at depths up to 4 mum. Confocal surface-enhanced Raman images at different depths show that a significant number of nanoparticles were incorporated into the pretreated sample, and they remained on the samples after rinsing. Quantitative X-ray fluorescence microanalyses indicate that the majority of nanoparticle incorporation occurs after an ionic liquid pretreatment of less than 1 h. In addition to improved pretreatments, the incorporation of materials and chemicals into wood and paper products enables isotope tracing, development of new sensing, and imaging capabilities.
Bioresource Technology | 2012
Marcel Lucas; Susan K. Hanson; Gregory L. Wagner; David B. Kimball; Kirk D. Rector
Manganese acetate was found to catalyze the oxidative delignification of wood with hydrogen peroxide at room temperature. The delignification reaction was monitored by optical and Raman microscopy, and liquid chromatography/mass spectrometry. When exposed to H(2)O(2) and Mn(OAc)(3) in aqueous solution, poplar wood sections were converted into a fine powder-like material which consisted of individual wood cells within 4 days at room temperature and without agitation. Optical and Raman microscopy provided the spatial distribution of cellulose and lignin in the wood structure, and showed the preferential oxidation of lignin-rich middle lamellae. Raman spectra from the solid residue revealed a delignified and cellulose-rich material. Glucose yields following enzymatic hydrolysis were 20-40% higher in poplar sawdust pretreated with Mn(OAc)(3) for 2, 4, and 7 days at room temperature than those in sawdust exposed to water only for identical durations, suggesting the viability of this mild, inexpensive method for pretreatment of lignocellulosic biomass.
Analytical Chemistry | 2012
Heming He; Peng Wang; David D. Allred; Jaroslaw Majewski; Marianne P. Wilkerson; Kirk D. Rector
A unique approach to detect chemical speciation and distribution on nanometer-scale nuclear materials has been achieved by the combination of neutron reflectometry and shell-isolated surface-enhanced Raman spectroscopy. Both surface and underlying layers of the uranium oxide materials were determined with angstrom-level resolution. Our results reveal that the UO(x) film is composed of three sublayers: an ∼38 Å thick layer of U(3)O(8) formed along the UO(x)/substrate interface; the adjacent sublayer consists of an ∼900 Å thick single phase of α-UO(3), and the top layer is γ-UO(3) with a thickness of ∼115 Å.
BMC Microbiology | 2013
Sofiya N. Micheva-Viteva; Yulin Shou; Kristy Nowak-Lovato; Kirk D. Rector; Elizabeth Hong-Geller
BackgroundThe pathogenic Yersinia species exhibit a primarily extracellular lifestyle through manipulation of host signaling pathways that regulate pro-inflammatory gene expression and cytokine release. To identify host genes that are targeted by Yersinia during the infection process, we performed an RNA interference (RNAi) screen based on recovery of host NF-κB-mediated gene activation in response to TNF-α stimulation upon Y. enterocolitica infection.ResultsWe screened shRNAs against 782 genes in the human kinome and 26 heat shock genes, and identified 19 genes that exhibited ≥40% relative increase in NF-κB reporter gene activity. The identified genes function in multiple cellular processes including MAP and ERK signaling pathways, ion channel activity, and regulation of cell growth. Pre-treatment with small molecule inhibitors specific for the screen hits c-KIT and CKII recovered NF-κB gene activation and/or pro-inflammatory TNF-α cytokine release in multiple cell types, in response to either Y. enterocolitica or Y. pestis infection.ConclusionsWe demonstrate that pathogenic Yersinia exploits c-KIT signaling in a T3SS-dependent manner to downregulate expression of transcription factors EGR1 and RelA/p65, and pro-inflammatory cytokines. This study is the first major functional genomics RNAi screen to elucidate virulence mechanisms of a pathogen that is primarily dependent on extracellular-directed immunomodulation of host signaling pathways for suppression of host immunity.
Contributions to Mineralogy and Petrology | 2017
Chloë E. Bonamici; William S. Kinman; John H. Fournelle; Mindy M. Zimmer; Anthony Douglas Pollington; Kirk D. Rector
Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.
Archive | 2012
Marcel Lucas; Gregory L. Wagner; Kirk D. Rector
Ionic liquids have been actively studied for the pretreatment of lignocellulosic biomass due to their ability to dissolve various native biomasses at high temperatures ranging from 70 to 140°C in several hours. In this chapter, their application is reviewed and the delignification mechanism is investigated through microscopic, spectroscopic, and chemical analyses. The effects of various cation–anion combinations, viability of cellulases, and the recycling of ionic liquids will be discussed. In addition, recent advances in the application of ionic liquids at room temperature will be described. For example, poplar wood cell walls swell upon exposure to an ionic liquid at room temperature, and recover partially their original size upon addition of water. A process to incorporate materials/chemicals into the wood structure is designed based on the expansion and contraction of the biomass, which has applications such as improved pretreatment strategies, composites, and sensing capabilities using low-cost and biocompatible materials.
International Journal of Analytical Chemistry | 2012
Kristy Nowak-Lovato; Kirk D. Rector
This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. The addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+] concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature (37°C) versus room temperature (25°C), (2) after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.
Geochimica et Cosmochimica Acta | 2004
Evert J. Elzinga; C. Drew Tait; Richard J. Reeder; Kirk D. Rector; Robert J. Donohoe; David E. Morris