Klaudia Skrzypek
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Klaudia Skrzypek.
PLOS ONE | 2009
Anna Grochot-Przeczek; Radoslaw Lach; Jacek Mis; Klaudia Skrzypek; Malgorzata Gozdecka; Patrycja Sroczynska; Milena Dubiel; Andrzej Rutkowski; Magdalena Kozakowska; Anna Zagorska; Jacek Walczynski; Halina Was; Jerzy Kotlinowski; Justyna Drukala; Krzysztof Kurowski; Claudine Kieda; Yann Herault; Jozef Dulak; Alicja Jozkowicz
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.
Antioxidants & Redox Signaling | 2013
Klaudia Skrzypek; Magdalena Tertil; Slawomir Golda; Maciej Ciesla; Kazimierz Weglarczyk; Guillaume Collet; Alan Guichard; Magdalena Kozakowska; Jorge Boczkowski; Halina Was; Tomasz Gil; Jarosław Kużdżał; Lucie Muchova; Libor Vitek; Agnieszka Loboda; Alicja Jozkowicz; Claudine Kieda; Jozef Dulak
AIMS Heme oxygenase-1 (HO-1, HMOX1) can prevent tumor initiation; while in various tumors, it has been demonstrated to promote growth, angiogenesis, and metastasis. Here, we investigated whether HMOX1 can modulate microRNAs (miRNAs) and regulate human non-small cell lung carcinoma (NSCLC) development. RESULTS Stable HMOX1 overexpression in NSCLC NCI-H292 cells up-regulated tumor-suppressive miRNAs, whereas it significantly diminished the expression of oncomirs and angiomirs. The most potently down-regulated was miR-378. HMOX1 also up-regulated p53, down-regulated angiopoietin-1 (Ang-1) and mucin-5AC (MUC5AC), reduced proliferation, migration, and diminished angiogenic potential. Carbon monoxide was a mediator of HMOX1 effects on proliferation, migration, and miR-378 expression. In contrast, stable miR-378 overexpression decreased HMOX1 and p53; while enhanced expression of MUC5AC, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and Ang-1, and consequently increased proliferation, migration, and stimulation of endothelial cells. Adenoviral delivery of HMOX1 reversed miR-378 effect on the proliferation and migration of cancer cells. In vivo, HMOX1 overexpressing tumors were smaller, less vascularized and oxygenated, and less metastatic. Overexpression of miR-378 exerted opposite effects. Accordingly, in patients with NSCLC, HMOX1 expression was lower in metastases to lymph nodes than in primary tumors. INNOVATION AND CONCLUSION In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378 significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new therapeutic target. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16, 293-296, 2012) with the following serving as open reviewers: James F. George, Mahin D. Maines, Justin C. Mason, and Yasufumi Sato.
Antioxidants & Redox Signaling | 2012
Magdalena Kozakowska; Maciej Ciesla; Anna Stefanska; Klaudia Skrzypek; Halina Was; Agnieszka Jazwa; Anna Grochot-Przeczek; Jerzy Kotlinowski; Agnieszka Szymula; Aleksandra Bartelik; Milena Mazan; Oleksandr Yagensky; Urszula Florczyk; Krzysztof Lemke; Anna Zebzda; Grzegorz Dyduch; Witold Nowak; Krzysztof Szade; Jacek Stepniewski; Marcin Majka; Rafal Derlacz; Agnieszka Loboda; Jozef Dulak; Alicja Jozkowicz
AIMS Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. RESULTS Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/-), and HMOX1(-/-) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. INNOVATION We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. CONCLUSION HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors.
Analytical and Bioanalytical Chemistry | 2011
Maciej Ciesla; Klaudia Skrzypek; Magdalena Kozakowska; Agnieszka Loboda; Alicja Jozkowicz; Jozef Dulak
MicroRNAs (miRNAs) are small, noncoding RNA molecules with the ability to posttranscriptionally regulate gene expression via targeting the 3′ untranslated region of messenger RNAs. miRNAs are critical for normal cellular functions such as the regulation of the cell cycle, differentiation, and apoptosis, and they target genes during embryonal and postnatal development, whereas their expression is unbalanced in various pathological states. Importantly, miRNAs are abundantly present in body fluids (e.g., blood), which are routinely examined in patients. These molecules circulate in free and exosome encapsulated forms, and can be efficiently detected and amplified by means of molecular biology tools such as real-time PCR. Together with relative stability, specificity, and reproducibility, they are seen as good candidates for early recognition of the onset of disease. Thus, miRNAs might be considered as biomarkers for many pathological states.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Hevidar Taha; Klaudia Skrzypek; Ibeth Guevara; Anneliese Nigisch; Stefan Mustafa; Anna Grochot-Przeczek; Pawel Ferdek; Halina Was; Jerzy Kotlinowski; Magdalena Kozakowska; Aneta Balcerczyk; Lucie Muchova; Libor Vitek; Guenter Weigel; Jozef Dulak; Alicja Jozkowicz
Objective—Heme oxygenase-1 (HO-1) is an antioxidative, antiinflammatory, and cytoprotective enzyme that is induced in response to cellular stress. The HO-1 promoter contains a (GT)n microsatellite DNA, and the number of GT repeats can influence the occurrence of cardiovascular diseases. We elucidated the effect of this polymorphism on endothelial cells isolated from newborns of different genotypes. Methods and Results—On the basis of HO-1 expression, we classified the HO-1 promoter alleles into 3 groups: short (S) (most active, GT ≤23), medium (moderately active, GT=24 to 28), and long (least active, GT ≥29). The presence of the S allele led to higher basal HO-1 expression and stronger induction in response to cobalt protoporphyrin, prostaglandin-J2, hydrogen peroxide, and lipopolysaccharide. Cells carrying the S allele survived better under oxidative stress, a fact associated with the lower concentration of oxidized glutathione and more favorable oxidative status, as determined by measurement of the ratio of glutathione to oxidized glutathione. Moreover, they proliferated more efficiently in response to vascular endothelial growth factor A, although the vascular endothelial growth factor–induced migration and sprouting of capillaries were not influenced. Finally, the presence of the S allele was associated with lower production of some proinflammatory mediators, such as interleukin-1&bgr;, interleukin-6, and soluble intercellular adhesion molecule-1. Conclusion—The (GT)n promoter polymorphism significantly modulates a cytoprotective, proangiogenic, and antiinflammatory function of HO-1 in human endothelium.
Free Radical Biology and Medicine | 2011
Halina Was; Malgorzata Sokolowska; Aleksandra Sierpniowska; Paweł Dominik; Klaudia Skrzypek; Bozena Lackowska; Antoni Pratnicki; Anna Grochot-Przeczek; Hevidar Taha; Jerzy Kotlinowski; Magdalena Kozakowska; Andrzej Mazan; Witold Nowak; Lucie Muchova; Libor Vitek; Anna Ratajska; Jozef Dulak; Alicja Jozkowicz
Heme oxygenase-1 (HO-1) is an antioxidative and cytoprotective enzyme, which may protect neoplastic cells against anticancer therapies, thereby promoting the progression of growing tumors. Our aim was to investigate the role of HO-1 in cancer induction. Experiments were performed in HO-1+/+, HO-1+/−, and HO-1−/− mice subjected to chemical induction of squamous cell carcinoma with 7,12-dimethylbenz[a]anthracene and phorbol 12-myristate 13-acetate. Measurements of cytoprotective genes in the livers evidenced systemic oxidative stress in the mice of all the HO-1 genotypes. Carcinogen-induced lesions appeared earlier in HO-1−/− and HO-1+/− than in wild-type animals. They also contained much higher concentrations of vascular endothelial growth factor and keratinocyte chemoattractant, but lower levels of tumor necrosis factor-α and interleukin-12. Furthermore, tumors grew much larger in HO-1 knockouts than in the other groups, which was accompanied by an increased rate of animal mortality. However, pathomorphological analysis indicated that HO-1−/− lesions were mainly large but benign papillomas. In contrast, in mice expressing HO-1, most lesions displayed dysplastic features and developed to invasive carcinoma. Thus, HO-1 may protect healthy tissues against carcinogen-induced injury, but in already growing tumors it seems to favor their progression toward more malignant forms.
Vascular Pharmacology | 2012
Guillaume Collet; Klaudia Skrzypek; Catherine Grillon; Agata Matejuk; Bouchra El Hafni-Rahbi; Nathalie Lamerant – Fayel; Claudine Kieda
Tumor microenvironment is a complex and highly dynamic milieu that provides very important clues on tumor development and progression mechanisms. Tumor-associated endothelial cells play a key role in stroma organization. They achieve tumor angiogenesis, a formation of tumor-associated (angiogenic) vessels mainly through sprouting from locally preexisting vessels and/or recruitment of bone marrow-derived endothelial progenitor cells. This process participates to supply nutritional support and oxygen to the growing tumor. Endothelial cells constitute the interface between circulating blood cells, tumor cells and the extracellular matrix, thereby controlling leukocyte recruitment, tumor cell behavior and metastasis formation. Hypoxia, a critical parameter of the tumor microenvironment, controls endothelial/tumor cell interactions and is the key to tumor angiogenesis development. Under hypoxic stress, tumor cells produce factors that promote angiogenesis, vasculogenesis, tumor cell motility, metastasis and cancer stem cell selection. Targeting tumor vessels is a therapeutic strategy that has lately been fast evolving from antiangiogenesis to vessel normalization as discussed in this review. We shall focus on the pivotal role of endothelial cells within the tumor microenvironment, the specific features and the part played by circulating endothelial precursors cells. Attention is stressed on their recruitment to the tumor site and their role in tumor angiogenesis where they are submitted to miRNAs-mediated de/regulation. Here the compensation of the tumor deregulated angiogenic miRNAs - angiomiRs - is emphasized as a potential therapeutic approach. The strategy is to over express anti-angiomiRs in the tumor angiogenesis site upon selective delivery by precursor endothelial cells as miRs carriers.
Free Radical Biology and Medicine | 2015
Magdalena Tertil; Slawomir Golda; Klaudia Skrzypek; Urszula Florczyk; Kazimierz Weglarczyk; Jerzy Kotlinowski; Monika Maleszewska; Szymon Czauderna; Chantal Pichon; Claudine Kieda; Alicja Jozkowicz; Jozef Dulak
Lung mucoepidermoid carcinoma (MEC) is a very poorly characterized rare subtype of non-small-cell lung cancer (NSCLC) associated with more favorable prognoses than other forms of intrathoracic malignancies. We have previously identified that heme oxygenase-1 (HO-1, encoded by HMOX1) inhibits MEC tumor growth and modulates the transcriptome of microRNAs. Here we investigate the role of a major upstream regulator of HO-1 and a master regulator of cellular antioxidant responses, transcription factor Nrf2, in MEC biology. Nrf2 overexpression in the NCI-H292 MEC cell line mimicked the phenotype of HO-1 overexpressing cells, leading to inhibition of cell proliferation and migration and down-regulation of oncogenic miR-378. HMOX1 silencing identified HO-1 as a major mediator of Nrf2 action. Nrf2- and HO-1 overexpressing cells exhibited strongly diminished expression of multiple matrix metalloproteinases and inflammatory cytokine interleukin-1β, which was confirmed in an NCI-HO-1 xenograft model. Overexpression of HO-1 altered not only human MMP levels in tumor cells but also murine MMP levels within tumor microenvironment and metastatic niche. This could possibly contribute to decreased metastasis to the lungs and inhibitory effects of HO-1 on MEC tumor growth. Our profound transcriptome analysis and molecular characterization of the mucoepidermoid lung carcinoma helps to understand the specific clinical presentations of these tumors, emphasizing a unique antitumoral role of the Nrf2-HO-1 axis.
PLOS ONE | 2014
Magdalena Tertil; Klaudia Skrzypek; Urszula Florczyk; Kazimierz Weglarczyk; Halina Was; Guillaume Collet; Alan Guichard; Tomasz Gil; Jarosław Kużdżał; Alicja Jozkowicz; Claudine Kieda; Chantal Pichon; Jozef Dulak
Proangiogenic enzyme thymidine phosphorylase (TP) is a promising target for anticancer therapy, yet its action in non-small cell lung carcinoma (NSCLC) is not fully understood. To elucidate its role in NSCLC tumor growth, NCI-H292 lung mucoepidermoid carcinoma cells and endothelial cells were engineered to overexpress TP by viral vector transduction. NSCLC cells with altered expression of transcription factor Nrf2 or its target gene heme oxygenase-1 (HO-1) were used to study the regulation of TP and the findings from pre-clinical models were related to gene expression data from clinical NSCLC specimens. Overexpression of Nrf2 or HO-1 resulted in upregulation of TP in NCI-H292 cells, an effect mimicked by treatment with an antioxidant N-acetylcysteine and partially reversed by HO-1 knockdown. Overexpression of TP attenuated cell proliferation and migration in vitro, but simultaneously enhanced angiogenic potential of cancer cells supplemented with thymidine. The latter was also observed for SK-MES-1 squamous cell carcinoma and NCI-H460 large cell carcinoma cells. TP-overexpressing NCI-H292 tumors in vivo exhibited better oxygenation and higher expression of IL-8, IL-1β and IL-6. TP overexpression in endothelial cells augmented their angiogenic properties which was associated with enhanced generation of HO-1 and VEGF. Correlation of TP with the expression of HO-1 and inflammatory cytokines was confirmed in clinical samples of NSCLC. Altogether, the increased expression of IL-1β and IL-6 together with proangiogenic effects of TP-expressing NSCLC on endothelium can contribute to tumor growth, implying TP as a target for antiangiogenesis in NSCLC.
Oncotarget | 2015
Klaudia Skrzypek; Anna Kusienicka; Barbara Szewczyk; Tomasz Adamus; Ewa Lukasiewicz; Katarzyna Miekus; Marcin Majka
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.