Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Halina Was is active.

Publication


Featured researches published by Halina Was.


Journal of Experimental Medicine | 2007

Stromal cell–derived factor 1 promotes angiogenesis via a heme oxygenase 1–dependent mechanism

Jessy Deshane; Sifeng Chen; Sergio Caballero; Anna Grochot-Przeczek; Halina Was; Sergio Li Calzi; Radoslaw Lach; Thomas D. Hock; Bo Chen; Nathalie Hill-Kapturczak; Gene P. Siegal; Jozef Dulak; Alicja Jozkowicz; Maria B. Grant; Anupam Agarwal

Stromal cell–derived factor 1 (SDF-1) plays a major role in the migration, recruitment, and retention of endothelial progenitor cells to sites of ischemic injury and contributes to neovascularization. We provide direct evidence demonstrating an important role for heme oxygenase 1 (HO-1) in mediating the proangiogenic effects of SDF-1. Nanomolar concentrations of SDF-1 induced HO-1 in endothelial cells through a protein kinase C ζ–dependent and vascular endothelial growth factor–independent mechanism. SDF-1–induced endothelial tube formation and migration was impaired in HO-1–deficient cells. Aortic rings from HO-1−/− mice were unable to form capillary sprouts in response to SDF-1, a defect reversed by CO, a byproduct of the HO-1 reaction. Phosphorylation of vasodilator-stimulated phosphoprotein was impaired in HO-1−/− cells, an event that was restored by CO. The functional significance of HO-1 in the proangiogenic effects of SDF-1 was confirmed in Matrigel plug, wound healing, and retinal ischemia models in vivo. The absence of HO-1 was associated with impaired wound healing. Intravitreal adoptive transfer of HO-1–deficient endothelial precursors showed defective homing and reendothelialization of the retinal vasculature compared with HO-1 wild-type cells following ischemia. These findings demonstrate a mechanistic role for HO-1 in SDF-1–mediated angiogenesis and provide new avenues for therapeutic approaches in vascular repair.


Current Drug Targets | 2010

Heme Oxygenase-1 in Tumor Biology and Therapy

Halina Was; Jozef Dulak; Alicja Jozkowicz

Heme oxygenase-1 (HO-1) degrades heme to carbon monoxide (CO), biliverdin, and ferrous iron. As HO-1 expression is highly increased by stressful conditions, the major role of the enzyme is the protection against oxidative injury. Additionally, it regulates cell proliferation, modulates inflammatory response and facilitates angiogenesis. Beneficial activities of HO-1 have been recognized in many pathological states e.g. atherosclerosis, diabetes, ischemia/reperfusion injury or organ transplantation. Interestingly HO-1 expression is very often boosted in tumor tissues and could be further elevated in response to radio-, chemo-, or photodynamic therapy. A growing body of evidence suggests that HO-1 may play a role in tumor induction and can potently improve the growth and spread of tumors. This review discusses the implications of HO-1 properties for tumor proliferation and cell death, differentiation, angiogenesis and metastasis, and tumor-related inflammation. Finally, it suggests that pharmacological agents that regulate HO activity or HO-1 gene silencing may become powerful tools for preventing the onset or progression of various cancers and sensitize them to anticancer therapies.


PLOS ONE | 2009

Heme Oxygenase-1 Accelerates Cutaneous Wound Healing in Mice

Anna Grochot-Przeczek; Radoslaw Lach; Jacek Mis; Klaudia Skrzypek; Malgorzata Gozdecka; Patrycja Sroczynska; Milena Dubiel; Andrzej Rutkowski; Magdalena Kozakowska; Anna Zagorska; Jacek Walczynski; Halina Was; Jerzy Kotlinowski; Justyna Drukala; Krzysztof Kurowski; Claudine Kieda; Yann Herault; Jozef Dulak; Alicja Jozkowicz

Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.


Antioxidants & Redox Signaling | 2013

Interplay Between Heme Oxygenase-1 and miR-378 Affects Non-Small Cell Lung Carcinoma Growth, Vascularization, and Metastasis

Klaudia Skrzypek; Magdalena Tertil; Slawomir Golda; Maciej Ciesla; Kazimierz Weglarczyk; Guillaume Collet; Alan Guichard; Magdalena Kozakowska; Jorge Boczkowski; Halina Was; Tomasz Gil; Jarosław Kużdżał; Lucie Muchova; Libor Vitek; Agnieszka Loboda; Alicja Jozkowicz; Claudine Kieda; Jozef Dulak

AIMS Heme oxygenase-1 (HO-1, HMOX1) can prevent tumor initiation; while in various tumors, it has been demonstrated to promote growth, angiogenesis, and metastasis. Here, we investigated whether HMOX1 can modulate microRNAs (miRNAs) and regulate human non-small cell lung carcinoma (NSCLC) development. RESULTS Stable HMOX1 overexpression in NSCLC NCI-H292 cells up-regulated tumor-suppressive miRNAs, whereas it significantly diminished the expression of oncomirs and angiomirs. The most potently down-regulated was miR-378. HMOX1 also up-regulated p53, down-regulated angiopoietin-1 (Ang-1) and mucin-5AC (MUC5AC), reduced proliferation, migration, and diminished angiogenic potential. Carbon monoxide was a mediator of HMOX1 effects on proliferation, migration, and miR-378 expression. In contrast, stable miR-378 overexpression decreased HMOX1 and p53; while enhanced expression of MUC5AC, vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), and Ang-1, and consequently increased proliferation, migration, and stimulation of endothelial cells. Adenoviral delivery of HMOX1 reversed miR-378 effect on the proliferation and migration of cancer cells. In vivo, HMOX1 overexpressing tumors were smaller, less vascularized and oxygenated, and less metastatic. Overexpression of miR-378 exerted opposite effects. Accordingly, in patients with NSCLC, HMOX1 expression was lower in metastases to lymph nodes than in primary tumors. INNOVATION AND CONCLUSION In vitro and in vivo data indicate that the interplay between HMOX1 and miR-378 significantly modulates NSCLC progression and angiogenesis, suggesting miR-378 as a new therapeutic target. REBOUND TRACK: This work was rejected during standard peer review and rescued by Rebound Peer Review (Antioxid Redox Signal 16, 293-296, 2012) with the following serving as open reviewers: James F. George, Mahin D. Maines, Justin C. Mason, and Yasufumi Sato.


Antioxidants & Redox Signaling | 2012

Heme Oxygenase-1 Inhibits Myoblast Differentiation by Targeting Myomirs

Magdalena Kozakowska; Maciej Ciesla; Anna Stefanska; Klaudia Skrzypek; Halina Was; Agnieszka Jazwa; Anna Grochot-Przeczek; Jerzy Kotlinowski; Agnieszka Szymula; Aleksandra Bartelik; Milena Mazan; Oleksandr Yagensky; Urszula Florczyk; Krzysztof Lemke; Anna Zebzda; Grzegorz Dyduch; Witold Nowak; Krzysztof Szade; Jacek Stepniewski; Marcin Majka; Rafal Derlacz; Agnieszka Loboda; Jozef Dulak; Alicja Jozkowicz

AIMS Heme oxygenase-1 (HMOX1) is a cytoprotective enzyme degrading heme to biliverdin, iron ions, and carbon monoxide, whose expression is induced in response to oxidative stress. Its overexpression has been suggested as a strategy improving survival of transplanted muscle precursors. RESULTS Here we demonstrated that HMOX1 inhibits differentiation of myoblasts and modulates miRNA processing: downregulates Lin28 and DGCR8, lowers the total pool of cellular miRNAs, and specifically blocks induction of myomirs. Genetic or pharmacological activation of HMOX1 in C2C12 cells reduces the abundance of miR-1, miR-133a, miR-133b, and miR-206, which is accompanied by augmented production of SDF-1 and miR-146a, decreased expression of MyoD, myogenin, and myosin, and disturbed formation of myotubes. Similar relationships between HMOX1 and myomirs were demonstrated in murine primary satellite cells isolated from skeletal muscles of HMOX1(+/+), HMOX1(+/-), and HMOX1(-/-) mice or in human rhabdomyosarcoma cell lines. Inhibition of myogenic development is independent of antioxidative properties of HMOX1. Instead it is mediated by CO-dependent inhibition of c/EBPδ binding to myoD promoter, can be imitated by SDF-1, and partially reversed by enforced expression of miR-133b and miR-206. Control C2C12 myoblasts injected to gastrocnemius muscles of NOD-SCID mice contribute to formation of muscle fibers. In contrast, HMOX1 overexpressing C2C12 myoblasts form fast growing, hyperplastic tumors, infiltrating the surrounding tissues, and disseminating to the lungs. INNOVATION We evidenced for the first time that HMOX1 inhibits differentiation of myoblasts, affects the miRNA processing enzymes, and modulates the miRNA transcriptome. CONCLUSION HMOX1 improves the survival of myoblasts, but concurrently through regulation of myomirs, may act similarly to oncogenes, increasing the risk of hyperplastic growth of myogenic precursors.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Role of Heme Oxygenase-1 in Human Endothelial Cells Lesson From the Promoter Allelic Variants

Hevidar Taha; Klaudia Skrzypek; Ibeth Guevara; Anneliese Nigisch; Stefan Mustafa; Anna Grochot-Przeczek; Pawel Ferdek; Halina Was; Jerzy Kotlinowski; Magdalena Kozakowska; Aneta Balcerczyk; Lucie Muchova; Libor Vitek; Guenter Weigel; Jozef Dulak; Alicja Jozkowicz

Objective—Heme oxygenase-1 (HO-1) is an antioxidative, antiinflammatory, and cytoprotective enzyme that is induced in response to cellular stress. The HO-1 promoter contains a (GT)n microsatellite DNA, and the number of GT repeats can influence the occurrence of cardiovascular diseases. We elucidated the effect of this polymorphism on endothelial cells isolated from newborns of different genotypes. Methods and Results—On the basis of HO-1 expression, we classified the HO-1 promoter alleles into 3 groups: short (S) (most active, GT ≤23), medium (moderately active, GT=24 to 28), and long (least active, GT ≥29). The presence of the S allele led to higher basal HO-1 expression and stronger induction in response to cobalt protoporphyrin, prostaglandin-J2, hydrogen peroxide, and lipopolysaccharide. Cells carrying the S allele survived better under oxidative stress, a fact associated with the lower concentration of oxidized glutathione and more favorable oxidative status, as determined by measurement of the ratio of glutathione to oxidized glutathione. Moreover, they proliferated more efficiently in response to vascular endothelial growth factor A, although the vascular endothelial growth factor–induced migration and sprouting of capillaries were not influenced. Finally, the presence of the S allele was associated with lower production of some proinflammatory mediators, such as interleukin-1&bgr;, interleukin-6, and soluble intercellular adhesion molecule-1. Conclusion—The (GT)n promoter polymorphism significantly modulates a cytoprotective, proangiogenic, and antiinflammatory function of HO-1 in human endothelium.


BMC Cancer | 2008

Zinc protoporphyrin IX, a heme oxygenase-1 inhibitor, demonstrates potent antitumor effects but is unable to potentiate antitumor effects of chemotherapeutics in mice

Dominika Nowis; Marek Bugajski; Magdalena Winiarska; Jacek Bil; Angelika Szokalska; Pawel Salwa; Tadeusz Issat; Halina Was; Alicja Jozkowicz; Jozef Dulak; Tomasz Stoklosa; Jakub Golab

BackgroundHO-1 participates in the degradation of heme. Its products can exert unique cytoprotective effects. Numerous tumors express high levels of HO-1 indicating that this enzyme might be a potential therapeutic target. In this study we decided to evaluate potential cytostatic/cytotoxic effects of zinc protoporphyrin IX (Zn(II)PPIX), a selective HO-1 inhibitor and to evaluate its antitumor activity in combination with chemotherapeutics.MethodsCytostatic/cytotoxic effects of Zn(II)PPIX were evaluated with crystal violet staining and clonogenic assay. Western blotting was used for the evaluation of protein expression. Flow cytometry was used to evaluate the influence of Zn(II)PPIX on the induction of apoptosis and generation of reactive oxygen species. Knock-down of HO-1 expression was achieved with siRNA. Antitumor effects of Zn(II)PPIX alone or in combination with chemotherapeutics were measured in transplantation tumor models.ResultsZn(II)PPIX induced significant accumulation of reactive oxygen species in tumor cells. This effect was partly reversed by administration of exogenous bilirubin. Moreover, Zn(II)PPIX exerted potent cytostatic/cytotoxic effects against human and murine tumor cell lines. Despite a significant time and dose-dependent decrease in cyclin D expression in Zn(II)PPIX-treated cells no accumulation of tumor cells in G1 phase of the cell cycle was observed. However, incubation of C-26 cells with Zn(II)PPIX increased the percentage of cells in sub-G1 phase of the cells cycle. Flow cytometry studies with propidium iodide and annexin V staining as well as detection of cleaved caspase 3 by Western blotting revealed that Zn(II)PPIX can induce apoptosis of tumor cells. B16F10 melanoma cells overexpressing HO-1 and transplanted into syngeneic mice were resistant to either Zn(II)PPIX or antitumor effects of cisplatin. Zn(II)PPIX was unable to potentiate antitumor effects of 5-fluorouracil, cisplatin or doxorubicin in three different tumor models, but significantly potentiated toxicity of 5-FU and cisplatin.ConclusionInhibition of HO-1 exerts antitumor effects but should not be used to potentiate antitumor effects of cancer chemotherapeutics unless procedures of selective tumor targeting of HO-1 inhibitors are developed.


Free Radical Biology and Medicine | 2011

Effects of heme oxygenase-1 on induction and development of chemically induced squamous cell carcinoma in mice

Halina Was; Malgorzata Sokolowska; Aleksandra Sierpniowska; Paweł Dominik; Klaudia Skrzypek; Bozena Lackowska; Antoni Pratnicki; Anna Grochot-Przeczek; Hevidar Taha; Jerzy Kotlinowski; Magdalena Kozakowska; Andrzej Mazan; Witold Nowak; Lucie Muchova; Libor Vitek; Anna Ratajska; Jozef Dulak; Alicja Jozkowicz

Heme oxygenase-1 (HO-1) is an antioxidative and cytoprotective enzyme, which may protect neoplastic cells against anticancer therapies, thereby promoting the progression of growing tumors. Our aim was to investigate the role of HO-1 in cancer induction. Experiments were performed in HO-1+/+, HO-1+/−, and HO-1−/− mice subjected to chemical induction of squamous cell carcinoma with 7,12-dimethylbenz[a]anthracene and phorbol 12-myristate 13-acetate. Measurements of cytoprotective genes in the livers evidenced systemic oxidative stress in the mice of all the HO-1 genotypes. Carcinogen-induced lesions appeared earlier in HO-1−/− and HO-1+/− than in wild-type animals. They also contained much higher concentrations of vascular endothelial growth factor and keratinocyte chemoattractant, but lower levels of tumor necrosis factor-α and interleukin-12. Furthermore, tumors grew much larger in HO-1 knockouts than in the other groups, which was accompanied by an increased rate of animal mortality. However, pathomorphological analysis indicated that HO-1−/− lesions were mainly large but benign papillomas. In contrast, in mice expressing HO-1, most lesions displayed dysplastic features and developed to invasive carcinoma. Thus, HO-1 may protect healthy tissues against carcinogen-induced injury, but in already growing tumors it seems to favor their progression toward more malignant forms.


Antioxidants & Redox Signaling | 2008

15d-PGJ2 upregulates synthesis of IL-8 in endothelial cells through induction of oxidative stress.

Alicja Jozkowicz; Halina Was; Hevidar Taha; Jerzy Kotlinowski; Katarzyna Mleczko; Jaroslaw Cisowski; Guenter Weigel; Jozef Dulak

15-Deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) is a cyclopentenone prostaglandin regarded as antiinflammatory mediator, which can act through peroxisome proliferator-activated receptor-gamma (PPARgamma) or through G protein-coupled surface receptors. It has been demonstrated that 15d-PGJ(2) potently increases the generation of interleukin-8 (IL-8) in human microvascular endothelial cells (HMEC-1s); however, the mechanism of this induction is not known. The aim of the study was to find the pathway involved in 15d-PGJ(2)-mediated IL-8 stimulation. Our data confirmed that the effect of 15d-PGJ(2) is independent of PPARgamma. For the first time, we excluded the activation of G proteins and the contribution of G protein-coupled surface receptors in endothelial cells treated with 15d-PGJ(2). Instead, we demonstrated that stimulation of IL-8 involved induction of oxidative stress, activation of p38 kinases, and increase in stability of IL-8 mRNA. Upregulation of IL-8 promoter, although measurable, seemed to play a less-pronounced role. Additionally, our results indicate the involvement of cAMP elevation and may suggest a role for ATF2 transcription factor. Concomitant induction of heme oxygenase-1 in HMEC-1s did not influence the synthesis of IL-8. In summary, we showed that 15d-PGJ(2), acting through oxidative stress, may exert proinflammatory effects. The upregulation of IL-8 is mostly associated with p38-mediated stabilization of mRNA.


PLOS ONE | 2014

Regulation and Novel Action of Thymidine Phosphorylase in Non-Small Cell Lung Cancer: Crosstalk with Nrf2 and HO-1

Magdalena Tertil; Klaudia Skrzypek; Urszula Florczyk; Kazimierz Weglarczyk; Halina Was; Guillaume Collet; Alan Guichard; Tomasz Gil; Jarosław Kużdżał; Alicja Jozkowicz; Claudine Kieda; Chantal Pichon; Jozef Dulak

Proangiogenic enzyme thymidine phosphorylase (TP) is a promising target for anticancer therapy, yet its action in non-small cell lung carcinoma (NSCLC) is not fully understood. To elucidate its role in NSCLC tumor growth, NCI-H292 lung mucoepidermoid carcinoma cells and endothelial cells were engineered to overexpress TP by viral vector transduction. NSCLC cells with altered expression of transcription factor Nrf2 or its target gene heme oxygenase-1 (HO-1) were used to study the regulation of TP and the findings from pre-clinical models were related to gene expression data from clinical NSCLC specimens. Overexpression of Nrf2 or HO-1 resulted in upregulation of TP in NCI-H292 cells, an effect mimicked by treatment with an antioxidant N-acetylcysteine and partially reversed by HO-1 knockdown. Overexpression of TP attenuated cell proliferation and migration in vitro, but simultaneously enhanced angiogenic potential of cancer cells supplemented with thymidine. The latter was also observed for SK-MES-1 squamous cell carcinoma and NCI-H460 large cell carcinoma cells. TP-overexpressing NCI-H292 tumors in vivo exhibited better oxygenation and higher expression of IL-8, IL-1β and IL-6. TP overexpression in endothelial cells augmented their angiogenic properties which was associated with enhanced generation of HO-1 and VEGF. Correlation of TP with the expression of HO-1 and inflammatory cytokines was confirmed in clinical samples of NSCLC. Altogether, the increased expression of IL-1β and IL-6 together with proangiogenic effects of TP-expressing NSCLC on endothelium can contribute to tumor growth, implying TP as a target for antiangiogenesis in NSCLC.

Collaboration


Dive into the Halina Was's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jozef Dulak

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudine Kieda

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge