Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kodappully Sivaraman Siveen is active.

Publication


Featured researches published by Kodappully Sivaraman Siveen.


Biochimica et Biophysica Acta | 2014

Targeting the STAT3 signaling pathway in cancer: Role of synthetic and natural inhibitors

Kodappully Sivaraman Siveen; Sakshi Sikka; Rohit Surana; Xiaoyun Dai; Jingwen Zhang; Alan Prem Kumar; B. K. H. Tan; Gautam Sethi; Anupam Bishayee

Signal transducers and activators of transcription (STATs) comprise a family of cytoplasmic transcription factors that mediate intracellular signaling that is usually generated at cell surface receptors and thereby transmit it to the nucleus. Numerous studies have demonstrated constitutive activation of STAT3 in a wide variety of human tumors, including hematological malignancies (leukemias, lymphomas, and multiple myeloma) as well as diverse solid tumors (such as head and neck, breast, lung, gastric, hepatocellular, colorectal and prostate cancers). There is strong evidence to suggest that aberrant STAT3 signaling promotes initiation and progression of human cancers by either inhibiting apoptosis or inducing cell proliferation, angiogenesis, invasion, and metastasis. Suppression of STAT3 activation results in the induction of apoptosis in tumor cells, and accordingly its pharmacological modulation by tyrosine kinase inhibitors, antisense oligonucleotides, decoy nucleotides, dominant negative proteins, RNA interference and chemopreventive agents have been employed to suppress the proliferation of various human cancer cells in culture and tumorigenicity in vivo. However, the identification and development of novel drugs that can target deregulated STAT3 activation effectively remains an important scientific and clinical challenge. This review presents the evidence for critical roles of STAT3 in oncogenesis and discusses the potential for development of novel cancer therapies based on mechanistic understanding of STAT3 signaling cascade.


Biochemical Journal | 2015

Analysis of the intricate relationship between chronic inflammation and cancer.

Edna Zhi Pei Chai; Kodappully Sivaraman Siveen; Muthu K. Shanmugam; Frank Arfuso; Gautam Sethi

Deregulated inflammatory response plays a pivotal role in the initiation, development and progression of tumours. Potential molecular mechanism(s) that drive the establishment of an inflammatory-tumour microenvironment is not entirely understood owing to the complex cross-talk between pro-inflammatory and tumorigenic mediators such as cytokines, chemokines, oncogenes, enzymes, transcription factors and immune cells. These molecular mediators are critical linchpins between inflammation and cancer, and their activation and/or deactivation are influenced by both extrinsic (i.e. environmental and lifestyle) and intrinsic (i.e. hereditary) factors. At present, the research pertaining to inflammation-associated cancers is accumulating at an exponential rate. Interest stems from hope that new therapeutic strategies against molecular mediators can be identified to assist in cancer treatment and patient management. The present review outlines the various molecular and cellular inflammatory mediators responsible for tumour initiation, progression and development, and discusses the critical role of chronic inflammation in tumorigenesis.


Journal of Biological Chemistry | 2012

Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer.

Kanjoormana Aryan Manu; Muthu K. Shanmugam; Feng Li; Kodappully Sivaraman Siveen; Shireen Vali; Shweta Kapoor; Taher Abbasi; Rohit Surana; Duane T. Smoot; Hassan Ashktorab; Patrick Tan; Kwang Seok Ahn; Chun Wei Yap; Alan Prem Kumar; Gautam Sethi

Background: PPAR-γ, a nuclear transcription factor, plays a critical role in the development of gastric cancer (GC). Hence, novel agents that can modulate PPAR-γ cascade have a great potential for the treatment of GC. Results: Isorhamnetin (IH) modulates PPAR-γ pathway in GC. Conclusion: IH induces apoptosis through the activation of the PPAR-γ pathway. Significance: The study proposes a novel agent for GC treatment. Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3′-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.


Phytochemistry Reviews | 2014

Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives

Nisha R. Parikh; Animesh Mandal; Deepak Bhatia; Kodappully Sivaraman Siveen; Gautam Sethi; Anupam Bishayee

Abstract Breast cancer is one of the most frequently diagnosed cancers and major cause of death in women in the world. Emerging evidence underscores the value of dietary and non-dietary phytochemicals, including triterpenoids, in the prevention and treatment of breast cancer. Oleanolic acid, an oleanane-type pentacyclic triterpenoid, is present in a large number of dietary and medicinal plants. Oleanolic acid and its derivatives exhibit several promising pharmacological activities, including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, antipruritic, spasmolytic, antiallergic, antimicrobial and antiviral effects. Numerous studies indicate that oleanolic acid and other oleanane triterpenoids modulate multiple intracellular signaling pathways and exert chemopreventive and antitumor activities in various in vitro and in vivo model systems. A series of novel synthetic oleanane triterpenoids have been prepared by chemical modifications of oleanolic acid and some of these compounds are considered to be the most potent anti-inflammatory and anticarcinogenic triterpenoids. Accumulating studies provide extensive evidence that synthetic oleanane derivatives inhibit proliferation and induce apoptosis of various cancer cells in vitro and demonstrate cancer preventive or antitumor efficacy in animal models of blood, breast, colon, connective tissue, liver, lung, pancreas, prostate and skin cancer. This review critically examines the potential role of oleanolic acid, oleanane triterpenoids and related synthetic compounds in the chemoprevention and treatment of mammary neoplasia. Both in vitro and in vivo studies on these agents and related molecular mechanisms are presented. Several challenges and future directions of research to translate already available impressive preclinical knowledge to clinical practice of breast cancer prevention and therapy are also presented.


Journal of Biological Chemistry | 2014

Novel Synthetic Biscoumarins Target Tumor Necrosis Factor-α in Hepatocellular Carcinoma In Vitro and In Vivo

Hosadurga K. Keerthy; Chakrabhavi Dhananjaya Mohan; Kodappully Sivaraman Siveen; Julian E. Fuchs; Shobith Rangappa; Mahalingam S. Sundaram; Feng Li; Kesturu S. Girish; Gautam Sethi; Basappa; Andreas Bender; Kanchugarakoppal S. Rangappa

Background: TNF-α-induced NF-κB pathway is associated with the progression of several cancers and abrogation of TNF signaling a potential target for cancer treatment. Results: Novel biscoumarin inhibits TNF signaling in vitro and in vivo in IBD model. Conclusion: The lead compound interrupts the trimeric structure of TNF to achieve this effect. Significance: This study introduces a novel TNF inhibitor with the potential to target pro-inflammatory diseases. TNF is a pleotropic cytokine known to be involved in the progression of several pro-inflammatory disorders. Many therapeutic agents have been designed to counteract the effect of TNF in rheumatoid arthritis as well as a number of cancers. In the present study we have synthesized and evaluated the anti-cancer activity of novel biscoumarins in vitro and in vivo. Among new compounds, BIHC was found to be the most cytotoxic agent against the HepG2 cell line while exhibiting less toxicity toward normal hepatocytes. Furthermore, BIHC inhibited the proliferation of various hepatocellular carcinoma (HCC) cells in a dose- and time-dependent manner. Subsequently, using in silico target prediction, BIHC was predicted as a TNF blocker. Experimental validation was able to confirm this hypothesis, where BIHC could significantly inhibit the recombinant mouse TNF-α binding to its antibody with an IC50 of 16.5 μm. Furthermore, in silico docking suggested a binding mode of BIHC similar to a ligand known to disrupt the native, trimeric structure of TNF, and also validated with molecular dynamics simulations. Moreover, we have demonstrated the down-regulation of p65 phosphorylation and other NF-κB-regulated gene products upon BIHC treatment, and on the phenotypic level the compound shows inhibition of CXCL12-induced invasion of HepG2 cells. Also, we demonstrate that BIHC inhibits infiltration of macrophages to the peritoneal cavity and suppresses the activity of TNF-α in vivo in mice primed with thioglycollate broth and lipopolysaccharide. We comprehensively validated the TNF-α inhibitory efficacy of BIHC in an inflammatory bowel disease mice model.


PLOS ONE | 2013

Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma

Kanjoormana Aryan Manu; Muthu K. Shanmugam; Tina H. Ong; Aruljothi Subramaniam; Kodappully Sivaraman Siveen; Ekambaram Perumal; Ramar Perumal Samy; Pradeep Bist; Lina H.K. Lim; Alan Prem Kumar; Kam M. Hui; Gautam Sethi

Accumulating evidence(s) indicate that CXCL12-CXCR4 signaling cascade plays an important role in the process of invasion and metastasis that accounts for more than 80% of deaths in hepatocellular carcinoma (HCC) patients. Thus, identification of novel agents that can downregulate CXCR4 expression and its associated functions have a great potential in the treatment of metastatic HCC. In the present report, we investigated an anthraquinone derivative, emodin for its ability to affect CXCR4 expression as well as function in HCC cells. We observed that emodin downregulated the expression of CXCR4 in a dose-and time-dependent manner in HCC cells. Treatment with pharmacological proteasome and lysosomal inhibitors did not have substantial effect on emodin-induced decrease in CXCR4 expression. When investigated for the molecular mechanism(s), it was observed that the suppression of CXCR4 expression was due to downregulation of mRNA expression, inhibition of NF-κB activation, and abrogation of chromatin immunoprecipitation activity. Inhibition of CXCR4 expression by emodin further correlated with the suppression of CXCL12-induced migration and invasion in HCC cell lines. In addition, emodin treatment significantly suppressed metastasis to the lungs in an orthotopic HCC mice model and CXCR4 expression in tumor tissues. Overall, our results show that emodin exerts its anti-metastatic effect through the downregulation of CXCR4 expression and thus has the potential for the treatment of HCC.


Bioorganic & Medicinal Chemistry Letters | 2015

Novel synthetic coumarins that targets NF-κB in Hepatocellular carcinoma

Mahabaleshwaraiah Neelgundmath; Koragere Rajashekar Dinesh; Chakrabhavi Dhananjaya Mohan; Feng Li; Xiaoyun Dai; Kodappully Sivaraman Siveen; Shardul Paricharak; Daniel J. Mason; Julian E. Fuchs; Gautam Sethi; Andreas Bender; Kanchugarakoppal S. Rangappa; Obelannavar Kotresh; Basappa

Hepatocellular carcinoma (HCC) is the fifth most common malignant tumor worldwide, and is the third most common cause of cancer related death. Constitutive activation of NF-κB is the underlying mechanism behind tumorigenesis and this protein regulates the expression of genes involved in proliferation, survival, drug resistance, angiogenesis and metastasis. The design of inhibitors which suppress NF-κB activation is therefore of great therapeutic importance in the treatment of HCC. In this study, we investigated the effect of newly synthesized coumarin derivatives against HCC cells, and identified (7-Carbethoxyamino-2-oxo-2H-chromen-4-yl)methylpyrrolidine-1 carbodithioate (CPP) as lead compound. Further, we evaluated the effect of CPP on the DNA binding ability of NF-κB, CXCL12-induced cell migration and invasion, and the regulated gene products in HCC cells. We found that CPP induced cytotoxicity in three HCC cells in a time and dose dependent manner, and suppressed the DNA binding ability of NF-κB. CPP significantly decreased the CXCL12-induced cell migration and invasion. More evidently, CPP inhibits the expression of NF-κB targeted genes such as cyclin D1, Bcl-2, survivin, MMP12 and C-Myc. Furthermore, the molecular docking analysis suggested that CPP interacts with the p50 binding domain of the p65 subunit, scoring best among the 26 docked coumarin derivatives of this study. Thus, we are reporting CPP as a potent inhibitor of the pro-inflammatory pathway in Hepatocellular carcinoma.


Biological Reviews | 2016

microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer

Jen N. Goh; Ser Y. Loo; Arpita Datta; Kodappully Sivaraman Siveen; Wei N. Yap; Wanpei Cai; Eun Myoung Shin; Chao Wang; Ji E. Kim; Maurice Chan; Arun Dharmarajan; Ann S.-G. Lee; Peter E. Lobie; Celestial T. Yap; Alan Prem Kumar

A large number of etiological factors and the complexity of breast cancers present challenges for prevention and treatment. Recently, the emergence of microRNAs (miRNAs) as cancer biomarkers has added an extra dimension to the ‘molecular signatures’ of breast cancer. Bioinformatic analyses indicate that each miRNA can regulate hundreds of target genes and could serve functionally as ‘oncogenes’ or ‘tumour suppressor’ genes, and co‐ordinate multiple cellular processes relevant to cancer progression. A number of studies have shown that miRNAs play important roles in breast tumorigenesis, metastasis, proliferation and differentiation of breast cancer cells. This review provides a comprehensive overview of miRNAs with established functional relevance in breast cancer, their established target genes and resulting cellular phenotype. The role and application of circulating miRNAs in breast cancer is also discussed. Furthermore, we summarize the role of miRNAs in the hallmarks of breast cancer, as well as the possibility of using miRNAs as potential biomarkers for detection of breast cancer.


Critical Reviews in Food Science and Nutrition | 2016

Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence

Anupam Bishayee; Yennie Haskell; Chau Do; Kodappully Sivaraman Siveen; Nima Mohandas; Gautam Sethi; Gary D. Stoner

Epidemiological reports as well as experimental studies have demonstrated the significant health benefits provided by regular berry consumption. Berries possess both prophylactic and therapeutic potential against several chronic illnesses, such as cardiovascular, neurodegenerative, and neoplastic diseases. Berries owe their health benefits to phytoconstituents, such as polyphenolic anthocyanins, ellagic acid, and a diverse array of phytochemicals bestowed with potent antioxidant and anti-inflammatory effects as well as the ability to engage a multitude of signaling pathways. This review highlights the principal chemical constituents present in berries and their primary molecular targets. The article presents and critically analyzes the chemopreventive and therapeutic potential of berry extracts, fractions, and bioactive components on various cancers of the gastrointestinal tract (GIT), including esophageal, stomach, intestinal, and colorectal cancers as well as cancers of the upper aerodigestive tract, such as oral cancer. The current status of clinical studies evaluating berry products in several aforementioned cancers is presented. Various emerging issues including dose-ranging and dosage forms, the role of synergy and the usage of combination therapy as well as other relevant areas essential for the development of berry phytoconstituents as mainstream chemopreventive and therapeutic agents against aerodigestive and GIT cancers are critically discussed.


Anti-Cancer Drugs | 2015

Silymarin and hepatocellular carcinoma: a systematic, comprehensive, and critical review.

Jeanetta K. Mastron; Kodappully Sivaraman Siveen; Gautam Sethi; Anupam Bishayee

The blessed milk thistle (Silybum marianum L.), a flowering plant native to Mediterranean Europe, has been consumed and extensively used as a cure for various chronic liver ailments over several centuries. Milk thistle extract, known as silymarin, is a complex mixture of seven major flavonolignans and one flavonoid. The phytoconstituents of silymarin owe their therapeutic and hepatoprotective effects to their strong antioxidant and anti-inflammatory properties. Primary liver cancer, also known as hepatocellular carcinoma (HCC), occurs in a milieu of oxidative stress and inflammation. The etiology of HCC includes chronic infection with hepatitis B and C viruses, cirrhosis, and exposure to dietary and environmental hepatocarcinogens. Current therapeutic options for HCC, including surgical resection and liver transplantation, have limited benefits and are essentially ineffective. Chemoprevention, using phytochemicals with potent antioxidant and anti-inflammatory properties, represents a fascinating strategy, which has been a subject of intense investigation in the recent years. In this review, we explore the potential role of silymarin as a chemopreventive and therapeutic agent for HCC. The review systematically evaluates the preclinical in-vitro and in-vivo studies investigating the effects of silymarin and its constituents on HCC. The biochemical mechanisms involved in the anti-liver-cancer effects of silymarin have been presented. The current status of clinical studies evaluating the potential of role of silymarin in liver cancer, especially that caused by hepatitis C virus, has also been examined. Potential challenges and future directions of research involved in the ‘bench-to-bedside’ transition of silymarin phytoconstituents for the chemoprevention and treatment of HCC have also been discussed.

Collaboration


Dive into the Kodappully Sivaraman Siveen's collaboration.

Top Co-Authors

Avatar

Gautam Sethi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Alan Prem Kumar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Feng Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Muthu K. Shanmugam

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanjoormana Aryan Manu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kam M. Hui

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge