Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kohki Konishi is active.

Publication


Featured researches published by Kohki Konishi.


The Astrophysical Journal | 2012

The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample

Nao Suzuki; D. Rubin; C. Lidman; Gregory Scott Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; J. Botyánszki; Mark Brodwin; Natalia Connolly; Kyle S. Dawson; Arjun Dey; Mamoru Doi; Megan Donahue; Susana Elizabeth Deustua; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; E. Y. Hsiao

We present Advanced Camera for Surveys, NICMOS, and Keck adaptive-optics-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the Hubble Space Telescope (HST) Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on board HST. The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey - II:supernova survey: technical summary

Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations

M. Sako; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Joshua A. Frieman; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Donald P. Schneider; Mathew Smith; Mark SubbaRao; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden; Naoki Yasuda

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey-II Photometry and Supernova IA Light Curves from the 2005 Data

Jon A. Holtzman; John P. Marriner; Richard Kessler; M. Sako; Ben Dilday; Joshua A. Frieman; Donald P. Schneider; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Saurabh W. Jha; Kohki Konishi; Hubert Lampeitl; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Mathew Smith; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden

We present ugriz light curves for 146 spectroscopically-confirmed or spectroscopically-probable Type Ia supernovae (SNe) from the 2005 season of the Sloan Digital Sky Survey-II Supernova (SN) survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that SN brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.


The Astrophysical Journal | 2009

Discovery of an Unusual Optical Transient with the Hubble Space Telescope

K. Barbary; Kyle S. Dawson; Kouichi Tokita; Gregory Scott Aldering; Rahman Amanullah; Natalia Connolly; Mamoru Doi; L. Faccioli; V. Fadeyev; Andrew S. Fruchter; Gerson Goldhaber; Ariel Goobar; A. Gude; X. Huang; Yutaka Ihara; Kohki Konishi; M. Kowalski; C. Lidman; Joshua Meyers; P. Nugent; S. Perlmutter; D. Rubin; David J. Schlegel; A. L. Spadafora; Nao Suzuki; H. Swift; Naohiro Takanashi; R. C. Thomas; Norihito Yasuda

We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ~;;100 days, reached a peak magnitude of ~;;21.0 in both i_775 and z_850, and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3 sigma upper limit of i_775 = 26.4 and z_850 = 26.1, giving a corresponding lower limit on the flux increase of a factor of ~;;120. Multiple spectra show five broad absorption bands between 4100 AA and 6500 AA and a mostly featureless continuum longward of 6500 AA. The shape of the lightcurve is inconsistent with microlensing. The transients spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.


The Astrophysical Journal | 2009

Early Phase Obserbations of Extermely Luminous Type Ia Supernova 2009dc

Masayuki Yamanaka; Koji S. Kawabata; Kenzo Kinugasa; Masaomi Tanaka; Akira Imada; Keiichi Maeda; K. Nomoto; Akira Arai; Shingo Chiyonobu; Yasushi Fukazawa; Osamu Hashimoto; Satoshi Honda; Yuki Ikejiri; R. Itoh; Yukiko Kamata; Nobuyuki Kawai; Tomoyuki Komatsu; Kohki Konishi; Daisuke Kuroda; Hisashi Miyamoto; Satoshi Miyazaki; Osamu Nagae; Hidehiko Nakaya; T. Ohsugi; Toshihiro Omodaka; Nobuyuki Sakai; Mahito Sasada; Mariko Suzuki; Hikaru Taguchi; Hidenori Takahashi

We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is ?m 15(B) = 0.65 ? 0.03, which is one of the slowest among SNe Ia. The peak V-band absolute magnitude is estimated to be MV = ?19.90 ? 0.15?mag if no host extinction is assumed. It reaches MV = ?20.19 ? 0.19?mag if we assume the host extinction of AV = 0.29?mag. SN 2009dc belongs to the most luminous class of SNe Ia, like SNe 2003fg and 2006gz. Our JHKs -band photometry shows that this SN is also one of the most luminous SNe Ia in near-infrared wavelengths. We estimate the ejected 56Ni mass of 1.2 ? 0.3 M ? for the no host extinction case (and of 1.6 ? 0.4 M ? for the host extinction of AV = 0.29?mag). The C II ?6580 absorption line remains visible until a week after the maximum brightness, in contrast to its early disappearance in SN 2006gz. The line velocity of Si II ?6355 is about 8000?km?s?1 around the maximum, being considerably slower than that of SN 2006gz. The velocity of the C II line is similar to or slightly less than that of the Si II line around the maximum. The presence of the carbon line suggests that the thick unburned C+O layer remains after the explosion. Spectropolarimetric observations by Tanaka et?al. indicate that the explosion is nearly spherical. These observational facts suggest that SN 2009dc is a super-Chandrasekhar mass SN Ia.


The Astrophysical Journal | 2008

A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey

Benjamin E. P. Dilday; Richard Kessler; Joshua A. Frieman; Jon A. Holtzman; John P. Marriner; Gajus A. Miknaitis; Robert C. Nichol; Roger W. Romani; M. Sako; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Saurabh W. Jha; Kohki Konishi; Hubert Lampeitl; J. L. Marshall; David P. McGinnis; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Donald P. Schneider; Mathew Smith; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden

We present a measurement of the rate of Type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift z ≤ 0.12. Assuming a flat cosmology with Ωm = 0.3 = 1 − ΩΛ, we find a volumetric SN Ia rate of [ 2.93+ 0.17−0.04(systematic)+ 0.90−0.71(statistical) ] × 10−5 SNe Mpc −3 h370 yr −1, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, rV ∝ (1 + z)β, we obtain a value of β = 1.5 ± 0.6, i.e., the SN Ia rate is determined to be an increasing function of redshift at the ~2.5 σ level. Fitting the results to a model in which the volumetric SN rate is rV = Aρ(t) + B(t), where ρ (t) is the stellar mass density and (t) is the star formation rate, we find A = (2.8 ± 1.2) × 10−14 SNe M−1☉ yr −1, B = (9.3+ 3.4−3.1) × 10−4 SNe M−1☉.


Monthly Notices of the Royal Astronomical Society | 2010

First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets

Hubert Lampeitl; Robert C. Nichol; Hee-Jong Seo; Tommaso Giannantonio; Charles Shapiro; Bruce A. Bassett; Will J. Percival; Tamara M. Davis; Benjamin E. P. Dilday; Joshua A. Frieman; Peter Marcus Garnavich; Masao Sako; M. Smith; Jesper Sollerman; Andrew Cameron Becker; D. Cinabro; A. V. Filippenko; Ryan J. Foley; Craig J. Hogan; Jon A. Holtzman; Saurabh W. Jha; Kohki Konishi; John P. Marriner; Michael W. Richmond; Adam G. Riess; Donald P. Schneider; Maximilian D. Stritzinger; K. J. van der Heyden; Jake Vanderplas; J. C. Wheeler

ABSTRACT We present an analysis of the luminosity distances of Type Ia Supernovae (SNe) from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey in conjunction with other intermediate-redshift (z 97 per cent level from this single data set. We find good agreement between the SN and BAO distance measurements, both consistent with a Λ-dominated cold dark matter cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (dL) and angular diameter (dA) distance measures. We then use these data to estimate w within this restricted redshift range (z < 0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81+0.16-0.18 (stat) +/- 0.15 (sys) and ΩM = 0.22+0.09-0.08 assuming a flat universe. This value of w and associated errors only change slightly if curvature is allowed to vary, consistent with constraints from the cosmic microwave background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.


The Astrophysical Journal | 2010

Type II-P supernovae from the SDSS-II supernova survey and the standardized candle method

C. B. D'Andrea; Masao Sako; Benjamin E. P. Dilday; Joshua A. Frieman; Jon A. Holtzman; Richard Kessler; Kohki Konishi; Donald P. Schneider; Jesper Sollerman; J. Craig Wheeler; Naoki Yasuda; D. Cinabro; Saurabh W. Jha; Robert C. Nichol; Hubert Lampeitl; Mathew Smith; David W. Atlee; Bruce A. Bassett; Francisco J. Castander; Ariel Goobar; R. Miquel; J. Nordin; Linda Ostman; Jose Luis Palacio Prieto; Robert Michael Quimby; Adam G. Riess; Maximillian Stritzinger

We apply the Standardized Candle Method (SCM) for Type II Plateau supernovae (SNe II-P), which relates the velocity of the ejecta of a SN to its luminosity during the plateau, to 15 SNe II-P discovered over the three season run of the Sloan Digital Sky Survey-II Supernova Survey. The redshifts of these SNe—0.027 0.01) as all of the current literature on the SCM combined. We find that the SDSS SNe have a very small intrinsic I-band dispersion (0.22 mag), which can be attributed to selection effects. When the SCM is applied to the combined SDSS-plus-literature set of SNe II-P, the dispersion increases to 0.29 mag, larger than the scatter for either set of SNe separately. We show that the standardization cannot be further improved by eliminating SNe with positive plateau decline rates, as proposed in Poznanski et al. We thoroughly examine all potential systematic effects and conclude that for the SCM to be useful for cosmology, the methods currently used to determine the Fe II velocity at day 50 must be improved, and spectral templates able to encompass the intrinsic variations of Type II-P SNe will be needed.


The Astronomical Journal | 2009

AN INTENSIVE HUBBLE SPACE TELESCOPE * SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS

Kyle S. Dawson; G. Aldering; R. Amanullah; K. Barbary; L. F. Barrientos; Mark Brodwin; Natalia Connolly; Arjun Dey; Mamoru Doi; Megan Donahue; Peter R. M. Eisenhardt; Erica Ellingson; L. Faccioli; V. Fadeyev; H. K. Fakhouri; Andrew S. Fruchter; David G. Gilbank; Michael D. Gladders; G. Goldhaber; Anthony H. Gonzalez; Ariel Goobar; A. Gude; T. Hattori; Henk Hoekstra; X. Huang; Yutaka Ihara; Buell T. Jannuzi; David E. Johnston; K. Kashikawa; Benjamin P. Koester

We present a new survey strategy to discover and study high-redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides an SN sample that can be used to decouple the effects of host-galaxy extinction and intrinsic color in high-redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

Collaboration


Dive into the Kohki Konishi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce A. Bassett

African Institute for Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge