Koho Iizuka
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Koho Iizuka.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Hamish R. C. Smith; Jonathan W. Heusel; Indira K. Mehta; Sungjin Kim; Brigitte G. Dorner; Olga V. Naidenko; Koho Iizuka; Hiroshi Furukawa; Diana L. Beckman; Jeanette T. Pingel; Anthony A. Scalzo; Daved H. Fremont; Wayne M. Yokoyama
Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.
Nature Immunology | 2002
Sungjin Kim; Koho Iizuka; Hyun Seok P Kang; Ayontunde Dokun; Anthony R. French; Suellen Greco; Wayne M. Yokoyama
Natural killer (NK) cells develop in the bone marrow, but their in vivo stages of maturation, expansion and acquisition of receptors that guide target cell specificity are not well defined. We describe here such stages of development. We also show that developing NK cells actively proliferate at a phenotypically distinguishable immature stage after they have acquired expression of Ly49 and CD94-NKG2 receptors. These studies provide a developmental framework for NK cell maturation in vivo and suggest the possible involvement of the Ly49 and CD94-NKG2 receptors themselves in modulating expansion of NK cell populations with a given NK cell receptor repertoire.
Journal of Immunology | 2002
Hiroshi Furukawa; Koho Iizuka; Jennifer Poursine-Laurent; Nilabh Shastri; Wayne M. Yokoyama
Mouse NK cells express inhibitory NK receptors that recognize target cell MHC class I molecules and activation receptors that are less well defined. The Ly-49D activation receptor on C57BL/6 NK cells recognizes Chinese hamster ovary cells and triggers natural killing. In this study, we demonstrate that a Chinese hamster classical MHC class I molecule is the ligand for Ly-49D in a reporter gene assay system as well as in NK cell killing assays. Ly-49D recognizes the Chinese hamster class I molecule better when it is expressed with Chinese hamster β2-microglobulin (β2m) than murine β2m. However, it is still controversial that Ly-49D recognizes H-2Dd, as we were unable to demonstrate the specificity previously reported. Using this one ligand-one receptor recognition system, function of an NK activation receptor was, for the first time, investigated in NK cells that are tolerized in β2m-deficient mice. Surprisingly, Ly-49D-killing activity against ligand-expressing targets was observed with β2m-deficient mouse NK cells, albeit reduced, even though “tolerized” function of Ly-49D was expected. These results indicate that Ly-49D specifically recognizes the Chinese hamster MHC class I molecule associated with Chinese hamster β2m, and indicate that the Ly-49D NK cell activation receptor is not tolerized in β2m deficiency.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Daisuke Ito; Yoshie-Matsubayashi Iizuka; Madhu P. Katepalli; Koho Iizuka
NK cells use surface NK receptors to discriminate self from non-self. The NK receptor ligand-binding domain (NKD) has been considered the sole regulator of ligand binding. Using a prototypic murine NK receptor, Ly49A, we show that the membrane proximal nonligand binding ecto-domain (the stalk region) is critical to ligand binding and signaling. The stalk region is required for receptor binding to ligand on target cells (trans interaction), but is dispensable for receptor binding to ligand on the same cell (cis interaction). Also, signaling in a trans manner depends on the stalk region mediating the formation of the immunological synapse. Thus, our data modeling receptor function at the cellular level reveal an essential role for the stalk region as a specific mediator of receptor signal integration, by which NKD-ligand interactions at the interface initiate and deliver information to the spatially separated cytoplasmic domain.
Journal of Immunology | 2008
Koho Iizuka; Anthony A. Scalzo; Hong Xian; Wayne M. Yokoyama
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2000
Sungjin Kim; Koho Iizuka; Hector L. Aguila; Irving L. Weissman; Wayne M. Yokoyama
Nature Immunology | 2003
Koho Iizuka; Olga V. Naidenko; Béatrice Plougastel; Daved H. Fremont; Wayne M. Yokoyama
Journal of Experimental Medicine | 2001
Bruce R. Blazar; Frederik P. Lindberg; Elizabeth Ingulli; Angela Panoskaltsis-Mortari; Per-Arne Oldenborg; Koho Iizuka; Wayne M. Yokoyama; Patricia A. Taylor
Proceedings of the National Academy of Sciences of the United States of America | 1999
Koho Iizuka; David D. Chaplin; Yang Wang; Qiang Wu; Lyle E. Pegg; Wayne M. Yokoyama; Yang-Xin Fu
Journal of Experimental Medicine | 1998
Azza H. Idris; Koho Iizuka; Hamish R. C. Smith; Anthony A. Scalzo; Wayne M. Yokoyama