Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daved H. Fremont is active.

Publication


Featured researches published by Daved H. Fremont.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Recognition of a virus-encoded ligand by a natural killer cell activation receptor

Hamish R. C. Smith; Jonathan W. Heusel; Indira K. Mehta; Sungjin Kim; Brigitte G. Dorner; Olga V. Naidenko; Koho Iizuka; Hiroshi Furukawa; Diana L. Beckman; Jeanette T. Pingel; Anthony A. Scalzo; Daved H. Fremont; Wayne M. Yokoyama

Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.


Nature Medicine | 2005

Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus

Theodore Oliphant; Michael Engle; Grant E. Nybakken; Chris Doane; Syd Johnson; Ling Huang; Sergey Gorlatov; Erin Mehlhop; Anantha Marri; Kyung Min Chung; Gregory D. Ebel; Laura D. Kramer; Daved H. Fremont; Michael S. Diamond

Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.


Science | 1996

Structures of an MHC Class II Molecule with Covalently Bound Single Peptides

Daved H. Fremont; Wayne A. Hendrickson; Philippa Marrack; John W. Kappler

The high-resolution x-ray crystal structures of the murine major histocompatibility complex (MHC) class II molecule, I-Ek, occupied by either of two antigenic peptides were determined. They reveal the structural basis for the I-Ek peptide binding motif and suggest general principles for additional alleles. A buried cluster of acidic amino acids in the binding groove predicted to be conserved among all murine I-E and human DR MHC class II molecules suggests how pH may influence MHC binding or exchange of peptides. These structures also complement mutational studies on the importance of individual peptide residues to T cell receptor recognition.


Immunity | 1998

HIGH- AND LOW-POTENCY LIGANDS WITH SIMILAR AFFINITIES FOR THE TCR : THE IMPORTANCE OF KINETICS IN TCR SIGNALING

Gilbert J. Kersh; Ellen Neumeister Kersh; Daved H. Fremont; Paul M. Allen

We have examined binding characteristics for a single TCR interacting with five of its different peptide/MHC ligands using surface plasmon resonance. We find that very small structural changes produce ligands with similar equilibrium binding affinities (K(D)) for the TCR, but vastly different potencies for T cell activation. Ligands with similar K(D)s induce similar amounts of total phospho-zeta but distinct patterns of zeta phosphorylation. Lower potency ligands induce only incomplete phosphorylation of TCR zeta and generally have faster off-rates. Therefore, the potency of TCR ligands is primarily determined by the half-life of the TCR-ligand complex and the consequent ability to induce complete phosphorylation of zeta.


Nature | 2005

Structural basis of West Nile virus neutralization by a therapeutic antibody.

Grant E. Nybakken; Theodore Oliphant; Syd Johnson; Stephen Burke; Michael S. Diamond; Daved H. Fremont

West Nile virus is a mosquito-borne flavivirus closely related to the human epidemic-causing dengue, yellow fever and Japanese encephalitis viruses. In establishing infection these icosahedral viruses undergo endosomal membrane fusion catalysed by envelope glycoprotein rearrangement of the putative receptor-binding domain III (DIII) and exposure of the hydrophobic fusion loop. Humoral immunity has an essential protective function early in the course of West Nile virus infection. Here, we investigate the mechanism of neutralization by the E16 monoclonal antibody that specifically binds DIII. Structurally, the E16 antibody Fab fragment engages 16 residues positioned on four loops of DIII, a consensus neutralizing epitope sequence conserved in West Nile virus and distinct in other flaviviruses. The E16 epitope protrudes from the surface of mature virions in three distinct environments, and docking studies predict Fab binding will leave five-fold clustered epitopes exposed. We also show that E16 inhibits infection primarily at a step after viral attachment, potentially by blocking envelope glycoprotein conformational changes. Collectively, our results suggest that a vaccine strategy targeting the dominant DIII epitope may elicit safe and effective immune responses against flaviviral diseases.


Journal of Immunology | 2002

Cutting Edge: Murine UL16-Binding Protein-Like Transcript 1: A Newly Described Transcript Encoding a High-Affinity Ligand for Murine NKG2D

Leonidas N. Carayannopoulos; Olga V. Naidenko; Daved H. Fremont; Wayne M. Yokoyama

Murine NKG2D is known to recognize H60 and five RAE1 variants. The human homologue recognizes both inducible MHC class I chain-related gene and constitutive (UL16-binding protein (ULBP)) ligands. Widely expressed, the latter are thought to mark transformed or infected cells for destruction by NK cells in the context of down-regulated cell surface class I (i.e., the “missing self”-response). Unlike MIC and ULBP however, mRNA for the murine ligands appears only in very limited contexts in the mature animal. In this study, we describe a NKG2D ligand termed “murine ULBP-like transcript 1 (MULT1) whose mRNA appears to be widely expressed in adult parenchyma. This molecule possesses MHC class I-like α1 and α2 domains as well as a large cytoplasmic domain. Recombinant MULT1 binds NKG2D with relatively high affinity (KD ≈ 6 nM) and low koff (∼0.006s−1). Expression of MULT1 by normally resistant RMA cells results in their susceptibility to lysis by C57BL/6 splenocytes.


Nature Structural & Molecular Biology | 2008

Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.

Shee-Mei Lok; Kostyuchenko; Grant E. Nybakken; Heather A. Holdaway; Anthony J. Battisti; S Sukupolvi-Petty; Dagmar Sedlak; Daved H. Fremont; Paul R. Chipman; John T. Roehrig; Michael S. Diamond; Richard J. Kuhn; Michael G. Rossmann

The monoclonal antibody 1A1D-2 has been shown to strongly neutralize dengue virus serotypes 1, 2 and 3, primarily by inhibiting attachment to host cells. A crystal structure of its antigen binding fragment (Fab) complexed with domain III of the viral envelope glycoprotein, E, showed that the epitope would be partially occluded in the known structure of the mature dengue virus. Nevertheless, antibody could bind to the virus at 37 °C, suggesting that the virus is in dynamic motion making hidden epitopes briefly available. A cryo-electron microscope image reconstruction of the virus:Fab complex showed large changes in the organization of the E protein that exposed the epitopes on two of the three E molecules in each of the 60 icosahedral asymmetric units of the virus. The changes in the structure of the viral surface are presumably responsible for inhibiting attachment to cells.


Immunity | 1998

Crystal Structure of I-Ak in Complex with a Dominant Epitope of Lysozyme

Daved H. Fremont; Didier Monnaie; Christopher A. Nelson; Wayne A. Hendrickson; Emil R. Unanue

We have determined the structure of murine MHC class II I-Ak in complex with a naturally processed peptide from hen egg lysozyme (HEL residues 50-62) at 1.9 A resolution. These results provide a structural basis for the I-Ak peptide-binding motif. Binding is established by the deep burial of five anchor side chains into specific pockets of the I-Ak binding groove, with a zen-like fit of an aspartic acid in the P1 pocket. We also show that in the I-Ak alpha chain, a bulge occurs in the first strand of the peptide-binding platform, an insertion probably common to all I-A and HLA-DQ alleles. The I-Ak beta chain has a deletion in the helical region adjacent to the P7 pocket and an insertion in the helical region neighboring the P1 pocket. As a result of these structural features, the extended HEL peptide dips low into the center of the I-Ak groove and reaches toward solvent at its C-terminal end.


Journal of Virology | 2006

Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein

Theodore Oliphant; Grant E. Nybakken; Michael Engle; Qing Xu; Christopher A. Nelson; Soila Sukupolvi-Petty; Anantha Marri; Bat-El Lachmi; Udy Olshevsky; Daved H. Fremont; Theodore C. Pierson; Michael S. Diamond

ABSTRACT Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc γ receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.


Journal of Virology | 2007

Type- and Subcomplex-Specific Neutralizing Antibodies against Domain III of Dengue Virus Type 2 Envelope Protein Recognize Adjacent Epitopes

Soila Sukupolvi-Petty; S. Kyle Austin; Whitney E. Purtha; Theodore Oliphant; Grant E. Nybakken; Jacob J. Schlesinger; John T. Roehrig; Gregory D. Gromowski; Alan D. T. Barrett; Daved H. Fremont; Michael S. Diamond

ABSTRACT Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.

Collaboration


Dive into the Daved H. Fremont's collaboration.

Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Nelson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ted H. Hansen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Theodore C. Pierson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grant E. Nybakken

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Wayne M. Yokoyama

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Melissa A. Edeling

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Wang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge