Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kohtarou Konno is active.

Publication


Featured researches published by Kohtarou Konno.


The Journal of Neuroscience | 2012

Three Types of Neurochemical Projection from the Bed Nucleus of the Stria Terminalis to the Ventral Tegmental Area in Adult Mice

Takehiro Kudo; Motokazu Uchigashima; Taisuke Miyazaki; Kohtarou Konno; Miwako Yamasaki; Yuchio Yanagawa; Masabumi Minami; Masahiko Watanabe

Dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) play crucial roles in motivational control of behaviors, and their activity is regulated directly or indirectly via GABAergic neurons by extrinsic afferents from various sources, including the bed nucleus of the stria terminalis (BST). Here, the neurochemical composition of VTA-projecting BST neurons and their outputs to the VTA were studied in adult mouse brains. By combining retrograde tracing with fluorescence in situ hybridization for 67 kDa glutamate decarboxylase (GAD67) and vesicular glutamate transporters (VGluTs), VTA-targeting BST neurons were classified into GAD67-positive (GAD67+)/VGluT3-negative (VGluT3−), GAD67+/VGluT3+, and VGluT2+ neurons, of which GAD67+/VGluT3− neurons constituted the majority (∼90%) of VTA-projecting BST neurons. GABAergic efferents from the BST formed symmetrical synapses on VTA neurons, which were mostly GABAergic neurons, and expressed GABAA receptor α1 subunit on their synaptic and extrasynaptic membranes. In the VTA, VGluT3 was detected in terminals expressing vesicular inhibitory amino acid transporter (VIAAT), plasmalemmal serotonin transporter, or neither. Of these, VIAAT+/VGluT3+ terminals, which should include those from GAD67+/VGluT3+ BST neurons, formed symmetrical synapses. When single axons from VGluT3+ BST neurons were examined, almost all terminals were labeled for VIAAT, whereas VGluT3 was often absent from terminals with high VIAAT loads. VGluT2+ terminals in the VTA exclusively formed asymmetrical synapses, which expressed AMPA receptors on postsynaptic membrane. Therefore, the major mode of the BST–VTA projection is GABAergic, and its activation is predicted to disinhibit VTA DAergic neurons. VGluT2+ and VGluT3+ BST neurons further supply additional projections, which may principally convey excitatory or inhibitory inputs, respectively, to the VTA.


European Journal of Neuroscience | 2010

Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex.

Chihiro Takasaki; Miwako Yamasaki; Motokazu Uchigashima; Kohtarou Konno; Yuchio Yanagawa; Masahiko Watanabe

Neuronal cell bodies are associated with glial cells collectively referred to as perineuronal satellite cells. One such satellite cell is the perineuronal oligodendrocyte, which is unmyelinating oligodendrocytes attaching to large neurons in various neural regions. However, little is known about their cellular characteristics and function. In this study, we identified perineuronal oligodendrocytes as 2′,3′‐cyclic nucleotide 3′‐phosphodiesterase‐positive cells attaching to neuronal perikarya immunostained for microtubule‐associated protein 2, and examined their cytochemical and cytological properties in the mouse cerebral cortex. 2′,3′‐Cyclic nucleotide 3′‐phosphodiesterase‐positive perineuronal oligodendrocytes were immunonegative to representative glial markers for astrocytes (brain‐type lipid binding protein and glial fibrillary acidic protein), microglia (Iba‐1) and NG2+ glia. However, almost all perineuronal oligodendrocytes expressed glia‐specific or glia‐enriched metabolic enzymes, i.e. the creatine synthetic enzyme S‐adenosylmethionine:guanidinoacetate N‐methyltransferase and l‐serine biosynthetic enzyme 3‐phosphoglycerate dehydrogenase. As to molecules participating in the glutamate–glutamine cycle, none of the perineuronal oligodendrocytes expressed the plasmalemmal glutamate transporters GLAST and GLT‐1, although nearly half of the perineuronal oligodendrocytes were immunopositive for glutamine synthetase. Cytologically, perineuronal oligodendrocytes were mainly distributed in deep cortical layers (layers IV–VI), and attached directly and tightly to neuronal cell bodies, making a long concave impression to the contacting neurons. Interestingly, they attached more to glutamatergic principal neurons than to GABAergic interneurons, and this became evident at postnatal day 14, when the cerebral cortex develops and maturates. These cytochemical and cytological properties suggest that perineuronal oligodendrocytes are so differentiated as to fulfill metabolic support to the associating principal cortical neurons, rather than to regulate their synaptic transmission.


The Journal of Neuroscience | 2012

Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe nucleus.

Hiroki Shikanai; Takayuki Yoshida; Kohtarou Konno; Miwako Yamasaki; Takeshi Izumi; Yu Ohmura; Masahiko Watanabe; Mitsuhiro Yoshioka

The serotonergic (5-HTergic) system arising from the dorsal raphe nucleus (DRN) is implicated in various physiological and behavioral processes, including stress responses. The DRN is comprised of several subnuclei, serving specific functions with distinct afferent and efferent connections. Furthermore, subsets of 5-HTergic neurons are known to coexpress other transmitters, including GABA, glutamate, or neuropeptides, thereby generating further heterogeneity. However, despite the growing evidence for functional variations among DRN subnuclei, relatively little is known about how they map onto neurochemical diversity of 5-HTergic neurons. In the present study, we characterized functional properties of GAD67-expressing 5-HTergic neurons (5-HT/GAD67 neurons) in the rat DRN, and compared with those of neurons expressing 5-HTergic molecules (5-HT neurons) or GAD67 alone. While 5-HT/GAD67 neurons were absent in the dorsomedial (DRD) or ventromedial (DRV) parts of the DRN, they were selectively distributed in the lateral wing of the DRN (DRL), constituting 12% of the total DRL neurons. They expressed plasmalemmal GABA transporter 1, but lacked vesicular inhibitory amino acid transporter. By using whole-cell patch-clamp recording, we found that 5-HT/GAD67 neurons had lower input resistance and firing frequency than 5-HT neurons. As revealed by c-Fos immunohistochemistry, neurons in the DRL, particularly 5-HT/GAD67 neurons, showed higher responsiveness to exposure to an open field arena than those in the DRD and DRV. By contrast, exposure to contextual fear conditioning stress showed no such regional differences. These findings indicate that 5-HT/GAD67 neurons constitute a unique neuronal population with distinctive neurochemical and electrophysiological properties and high responsiveness to innocuous stressor.


The Journal of Neuroscience | 2011

Developmental Switching of Perisomatic Innervation from Climbing Fibers to Basket Cell Fibers in Cerebellar Purkinje Cells

Ryoichi Ichikawa; Miwako Yamasaki; Taisuke Miyazaki; Kohtarou Konno; Kouichi Hashimoto; Haruyuki Tatsumi; Yoshiro Inoue; Masanobu Kano; Masahiko Watanabe

In early postnatal development, perisomatic innervation of cerebellar Purkinje cells (PCs) switches from glutamatergic climbing fibers (CFs) to GABAergic basket cell fibers (BFs). Here we examined the switching process in C57BL/6 mice. At postnatal day 7 (P7), most perisomatic synapses were formed by CFs on to somatic spines. The density of CF–spine synapses peaked at P9, when pericellular nest around PCs by CFs was most developed, and CF–spine synapses constituted 88% of the total perisomatic synapses. Thereafter, CF–spine synapses dropped to 63% at P12, 6% at P15, and <1% at P20, whereas BF synapses increased reciprocally. During the switching period, a substantial number of BF synapses existed as BF–spine synapses (37% of the total perisomatic synapses at P15), and free spines surrounded by BFs or Bergmann glia also emerged. By P20, BF–spine synapses and free spines virtually disappeared, and BF–soma synapses became predominant (88%), thus attaining the adult pattern of perisomatic innervation. Parallel with the presynaptic switching, postsynaptic receptor phenotype also switched from glutamatergic to GABAergic. In the active switching period, particularly at P12, fragmental clusters of AMPA-type glutamate receptor were juxtaposed with those of GABAA receptor. When examined with serial ultrathin sections, immunogold labeling for glutamate and GABAA receptors was often clustered beneath single BF terminals. These results suggest that a considerable fraction of somatic spines is succeeded from CFs to BFs and Bergmann glia in the early postnatal period, and that the switching of postsynaptic receptor phenotypes mainly proceeds under the coverage of BF terminals.


The Journal of Neuroscience | 2014

Enriched expression of GluD1 in higher brain regions and its involvement in parallel fiber-interneuron synapse formation in the cerebellum.

Kohtarou Konno; Keiko Matsuda; Chihiro Nakamoto; Motokazu Uchigashima; Taisuke Miyazaki; Miwako Yamasaki; Kenji Sakimura; Michisuke Yuzaki; Masahiko Watanabe

Of the two members of the δ subfamily of ionotropic glutamate receptors, GluD2 is exclusively expressed at parallel fiber–Purkinje cell (PF–PC) synapses in the cerebellum and regulates their structural and functional connectivity. However, little is known to date regarding cellular and synaptic expression of GluD1 and its role in synaptic circuit formation. In the present study, we investigated this issue by producing specific and sensitive histochemical probes for GluD1 and analyzing cerebellar synaptic circuits in GluD1-knock-out mice. GluD1 was widely expressed in the adult mouse brain, with high levels in higher brain regions, including the cerebral cortex, striatum, limbic regions (hippocampus, nucleus accumbens, lateral septum, bed nucleus stria terminalis, lateral habenula, and central nucleus of the amygdala), and cerebellar cortex. In the cerebellar cortex, GluD1 mRNA was expressed at the highest level in molecular layer interneurons and its immunoreactivity was concentrated at PF synapses on interneuron somata. In GluD1-knock-out mice, the density of PF synapses on interneuron somata was significantly reduced and the size and number of interneurons were significantly diminished. Therefore, GluD1 is common to GluD2 in expression at PF synapses, but distinct from GluD2 in neuronal expression in the cerebellar cortex; that is, GluD1 in interneurons and GluD2 in PCs. Furthermore, GluD1 regulates the connectivity of PF–interneuron synapses and promotes the differentiation and/or survival of molecular layer interneurons. These results suggest that GluD1 works in concert with GluD2 for the construction of cerebellar synaptic wiring through distinct neuronal and synaptic expressions and also their shared synapse-connecting function.


European Journal of Neuroscience | 2014

GABAergic neurons in the ventral tegmental area receive dual GABA/enkephalin‐mediated inhibitory inputs from the bed nucleus of the stria terminalis

Takehiro Kudo; Kohtarou Konno; Motokazu Uchigashima; Yuchio Yanagawa; Ichiro Sora; Masabumi Minami; Masahiko Watanabe

Activation of mu‐opioid receptor (MOR) disinhibits dopaminergic neurons in the ventral tegmental area (VTA) through inhibition of γ‐aminobutyric acid (GABA)ergic neurons. This mechanism is thought to play a pivotal role in mediating reward behaviors. Here, we characterised VTA‐projecting enkephalinergic neurons in the anterior division of the bed nucleus of the stria terminalis (BST) and investigated their targets by examining MOR expression in the VTA. In the BST, neurons expressing preproenkephalin mRNA were exclusively GABAergic, and constituted 37.2% of the total GABAergic neurons. Using retrograde tracer injected into the VTA, 21.6% of VTA‐projecting BST neurons were shown to express preproenkephalin mRNA. Enkephalinergic projections from the BST exclusively formed symmetrical synapses onto the dendrites of VTA neurons. In the VTA, 74.1% of MOR mRNA‐expressing neurons were GABAergic, with the rest being glutamatergic neurons expressing type‐2 vesicular glutamate transporter mRNA. However, MOR mRNA was below the detection threshold in dopaminergic neurons. By immunohistochemistry, MOR was highly expressed on the extrasynaptic membranes of dendrites in GABAergic VTA neurons, including dendrites innervated by BST–VTA projection terminals. MOR was also expressed weakly on GABAergic and glutamatergic terminals in the VTA. Given that GABAAα1 is expressed at GABAergic BST–VTA synapses on dendrites of GABAergic neurons [T. Kudo et al. (2012) J. Neurosci., 32, 18035–18046], our results collectively indicate that the BST sends dual inhibitory outputs targeting GABAergic VTA neurons; GABAergic inhibition via ‘wired’ transmission, and enkephalinergic inhibition via ‘volume’ transmission. This dual inhibitory system provides the neural substrate underlying the potent disinhibitory control over dopaminergic VTA neurons exerted by the BST.


Amino Acids | 2015

Is d-aspartate produced by glutamic-oxaloacetic transaminase-1 like 1 (Got1l1): a putative aspartate racemase?

Ayumi Tanaka-Hayashi; Shuuhei Hayashi; Ran Inoue; Tomokazu Ito; Kohtarou Konno; Tomoyuki Yoshida; Masahiko Watanabe; Tohru Yoshimura; Hisashi Mori

Abstractd-Aspartate is an endogenous free amino acid in the brain, endocrine tissues, and exocrine tissues in mammals, and it plays several physiological roles. In the testis, d-aspartate is detected in elongate spermatids, Leydig cells, and Sertoli cells, and implicated in the synthesis and release of testosterone. In the hippocampus, d-aspartate strongly enhances N-methyl-d-aspartate receptor-dependent long-term potentiation and is involved in learning and memory. The existence of aspartate racemase, a candidate enzyme for d-aspartate production, has been suggested. Recently, mouse glutamic-oxaloacetic transaminase 1-like 1 (Got1l1) has been reported to synthesize substantially d-aspartate from l-aspartate and to be involved in adult neurogenesis. In this study, we investigated the function of Got1l1 in vivo by generating and analyzing Got1l1 knockout (KO) mice. We also examined the enzymatic activity of recombinant Got1l1 in vitro. We found that Got1l1 mRNA is highly expressed in the testis, but it is not detected in the brain and submandibular gland, where d-aspartate is abundant. The d-aspartate contents of wild-type and Got1l1 KO mice were not significantly different in the testis and hippocampus. The recombinant Got1l1 expressed in mammalian cells showed l-aspartate aminotransferase activity, but lacked aspartate racemase activity. These findings suggest that Got1l1 is not the major aspartate racemase and there might be an as yet unknown d-aspartate-synthesizing enzyme.


The Journal of Neuroscience | 2016

Roles of Cbln1 in non-motor functions of mice

Shintaro Otsuka; Kohtarou Konno; Manabu Abe; Junko Motohashi; Kazuhisa Kohda; Kenji Sakimura; Masahiko Watanabe; Michisuke Yuzaki

The cerebellum is thought to be involved in cognitive functions in addition to its well established role in motor coordination and motor learning in humans. Cerebellin 1 (Cbln1) is predominantly expressed in cerebellar granule cells and plays a crucial role in the formation and function of parallel fiber–Purkinje cell synapses. Although genes encoding Cbln1 and its postsynaptic receptor, the delta2 glutamate receptor (GluD2), are suggested to be associated with autistic-like traits and many psychiatric disorders, whether such cognitive impairments are caused by cerebellar dysfunction remains unclear. In the present study, we investigated whether and how Cbln1 signaling is involved in non-motor functions in adult mice. We show that acquisition and retention/retrieval of cued and contextual fear memory were impaired in Cbln1-null mice. In situ hybridization and immunohistochemical analyses revealed that Cbln1 is expressed in various extracerebellar regions, including the retrosplenial granular cortex and the hippocampus. In the hippocampus, Cbln1 immunoreactivity was present at the molecular layer of the dentate gyrus and the stratum lacunosum-moleculare without overt mRNA expression, suggesting that Cbln1 is provided by perforant path fibers. Retention/retrieval, but not acquisition, of cued and contextual fear memory was impaired in forebrain-predominant Cbln1-null mice. Spatial learning in the radial arm water maze was also abrogated. In contrast, acquisition of fear memory was affected in cerebellum-predominant Cbln1-null mice. These results indicate that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially and that Cbln1 signaling likely regulates motor and non-motor functions in multiple brain regions. SIGNIFICANCE STATEMENT Despites its well known role in motor coordination and motor learning, whether and how the cerebellum is involved in cognitive functions remains less clear. Cerebellin 1 (Cbln1) is highly expressed in the cerebellum and serves as an essential synaptic organizer. Although genes encoding Cbln1 and its receptor are associated with many psychiatric disorders, it remains unknown whether such cognitive impairments are caused by cerebellar dysfunction. Here, we show that Cbln1 is also expressed in the forebrain, including the hippocampus and retrosplenial granular cortex. Using forebrain- and cerebellum-predominant conditional Cbln1-null mice, we show that Cbln1 in the forebrain and cerebellum mediates specific aspects of fear conditioning and spatial memory differentially, indicating that Cbln1 signaling regulates both motor and non-motor functions in multiple brain regions.


The Journal of Neuroscience | 2015

VGluT3-Expressing CCK-Positive Basket Cells Construct Invaginating Synapses Enriched with Endocannabinoid Signaling Proteins in Particular Cortical and Cortex-Like Amygdaloid Regions of Mouse Brains

Yuki Omiya; Motokazu Uchigashima; Kohtarou Konno; Miwako Yamasaki; Taisuke Miyazaki; Takayuki Yoshida; Ichiro Kusumi; Masahiko Watanabe

Invaginating synapses in the basal amygdala are a unique type of GABAergic synapses equipped with molecular-anatomical organization specialized for 2-arachidonoylglycerol (2-AG)-mediated endocannabinoid signaling. Cholecystokinin (CCK)-positive basket cell terminals protrude into pyramidal cell somata and form invaginating synapses, where apposing presynaptic and postsynaptic elements are highly loaded with cannabinoid receptor CB1 or 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα), respectively. The present study scrutinized their neurochemical and neuroanatomical phenotypes in adult mouse telencephalon. In the basal amygdala, vesicular glutamate transporter-3 (VGluT3) was transcribed in one-fourth of CB1-expressing GABAergic interneurons. The majority of VGluT3-positive CB1-expressing basket cell terminals apposed DGLα clusters, whereas the majority of VGluT3-negative ones did not. Importantly, VGluT3-positive basket cell terminals selectively constructed invaginating synapses. GABAA receptors accumulated on the postsynaptic membrane of invaginating synapses, whereas metabotropic glutamate receptor-5 (mGluR5) was widely distributed on the somatodendritic surface of pyramidal cells. Moreover, CCK2 receptor (CCK2R) was highly transcribed in pyramidal cells. In cortical regions, pyramidal cells equipped with such VGluT3/CB1/DGLα-accumulated invaginating synapses were found at variable frequencies depending on the subregions. Therefore, in addition to extreme proximity of CB1- and DGLα-loaded presynaptic and postsynaptic elements, tripartite transmitter phenotype of GABA/glutamate/CCK is the common neurochemical feature of invaginating synapses, suggesting that glutamate, CCK, or both can promote 2-AG synthesis through activating Gαq/11 protein-coupled mGluR5 and CCK2R. These molecular configurations led us to hypothesize that invaginating synapses might be evolved to provide some specific mechanisms of induction, regulation, and cooperativity for 2-AG-mediated retrograde signaling in particular cortical and cortex-like amygdaloid regions.


PLOS ONE | 2013

Chronic alterations in monoaminergic cells in the locus coeruleus in orexin neuron-ablated narcoleptic mice.

Natsuko Tsujino; Tomomi Tsunematsu; Motokazu Uchigashima; Kohtarou Konno; Akihiro Yamanaka; Kazuto Kobayashi; Masahiko Watanabe; Yoshimasa Koyama; Takeshi Sakurai

Narcolepsy patients often suffer from insomnia in addition to excessive daytime sleepiness. Narcoleptic animals also show behavioral instability characterized by frequent transitions between all vigilance states, exhibiting very short bouts of NREM sleep as well as wakefulness. The instability of wakefulness states in narcolepsy is thought to be due to deficiency of orexins, neuropeptides produced in the lateral hypothalamic neurons, which play a highly important role in maintaining wakefulness. However, the mechanism responsible for sleep instability in this disorder remains to be elucidated. Because firing of orexin neurons ceases during sleep in healthy animals, deficiency of orexins does not explain the abnormality of sleep. We hypothesized that chronic compensatory changes in the neurophysiologica activity of the locus coeruleus (LC) and dorsal raphe (DR) nucleus in response to the progressive loss of endogenous orexin tone underlie the pathological regulation of sleep/wake states. To evaluate this hypothesis, we examined firing patterns of serotonergic (5-HT) neurons and noradrenergic (NA) neurons in the brain stem, two important neuronal populations in the regulation of sleep/wakefulness states. We recorded single-unit activities of 5-HT neurons and NA neurons in the DR nucleus and LC of orexin neuron-ablated narcoleptic mice. We found that while the firing pattern of 5-HT neurons in narcoleptic mice was similar to that in wildtype mice, that of NA neurons was significantly different from that in wildtype mice. In narcoleptic mice, NA neurons showed a higher firing frequency during both wakefulness and NREM sleep as compared with wildtype mice. In vitro patch-clamp study of NA neurons of narcoleptic mice suggested a functional decrease of GABAergic input to these neurons. These alterations might play roles in the sleep abnormality in narcolepsy.

Collaboration


Dive into the Kohtarou Konno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge