Konstantinos Zarbalis
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Konstantinos Zarbalis.
Cell | 2009
Julie A. Siegenthaler; Amir M. Ashique; Konstantinos Zarbalis; Katelin P. Patterson; Jonathan H. Hecht; Maureen A. Kane; Alexandra E. Folias; Youngshik Choe; Scott R. May; Tsutomu Kume; Joseph L. Napoli; Andrew S. Peterson; Samuel J. Pleasure
Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.
PLOS Biology | 2004
Konstantinos Zarbalis; Scott R. May; Yiguo Shen; Marc Ekker; John L.R. Rubenstein; Andrew S. Peterson
Although the mechanisms that regulate development of the cerebral cortex have begun to emerge, in large part through the analysis of mutant mice (Boncinelli et al. 2000; Molnar and Hannan 2000; Walsh and Goffinet 2000), many questions remain unanswered. To provide resources for further dissecting cortical development, we have carried out a focused screen for recessive mutations that disrupt cortical development. One aim of the screen was to identify mutants that disrupt the tangential migration of interneurons into the cortex. At the same time, we also screened for mutations that altered the growth or morphology of the cerebral cortex. We report here the identification of thirteen mutants with defects in aspects of cortical development ranging from the establishment of epithelial polarity to the invasion of thalamocortical axons. Among the collection are three novel alleles of genes for which mutant alleles had already been used to explore forebrain development, and four mutants with defects in interneuron migration. The mutants that we describe here will aid in deciphering the molecules and mechanisms that regulate cortical development. Our results also highlight the utility of focused screens in the mouse, in addition to the large-scale and broadly targeted screens that are being carried out at mutagenesis centers.
Neuron | 2009
Andrea Wizenmann; Isabelle Brunet; Joyce S.Y. Lam; Laure Sonnier; Marine Beurdeley; Konstantinos Zarbalis; Daniela Weisenhorn-Vogt; Christine Weinl; Asha Dwivedy; Alain Joliot; Wolfgang Wurst; Christine E. Holt; Alain Prochiantz
Engrailed transcription factors regulate the expression of guidance cues that pattern retinal axon terminals in the dorsal midbrain. They also act directly to guide axon growth in vitro. We show here that an extracellular En gradient exists in the tectum along the anterior-posterior axis. Neutralizing extracellular Engrailed in vivo with antibodies expressed in the tectum causes temporal axons to map aberrantly to the posterior tectum in chick and Xenopus. Furthermore, posterior membranes from wild-type tecta incubated with anti-Engrailed antibodies or posterior membranes from Engrailed-1 knockout mice exhibit diminished repulsive activity for temporal axons. Since EphrinAs play a major role in anterior-posterior mapping, we tested whether Engrailed cooperates with EphrinA5 in vitro. We find that Engrailed restores full repulsion to axons given subthreshold doses of EphrinA5. Collectively, our results indicate that extracellular Engrailed contributes to retinotectal mapping in vivo by modulating the sensitivity of growth cones to EphrinA.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Konstantinos Zarbalis; Julie A. Siegenthaler; Youngshik Choe; Scott R. May; Andrew S. Peterson; Samuel J. Pleasure
We report the identification of a hypomorphic mouse allele for Foxc1 (Foxc1hith) that survives into adulthood revealing previously unknown roles for Foxc1 in development of the skull and cerebral cortex. This line of mice was recovered in a forward genetic screen using ENU mutagenesis to identify mutants with cortical defects. In the hith allele a missense mutation substitutes a Leu for a conserved Phe at amino acid 107, leading to destabilization of the protein without substantially altering transcriptional activity. Embryonic and postnatal histological analyses indicate that diminished Foxc1 protein expression in all three layers of meningeal cells in Foxc1hith/hith mice contributes to the cortical and skull defects in mutant mice and that the prominent phenotypes appear as the meninges differentiate into pia, arachnoid, and dura. Careful analysis of the cortical phenotypes shows that Foxc1hith/hith mice display detachment of radial glial endfeet, marginal zone heterotopias, and cortical dyslamination. These abnormalities have some features resembling defects in type 2 (cobblestone) lissencephaly or congenital muscular dystrophies but appear later in corticogenesis because of the delay in breakdown of the basement membrane. Our data reveal that the meninges regulate the development of the skull and cerebral cortex by controlling aspects of the formation of these neighboring structures. Furthermore, we provide evidence that defects in meningeal differentiation can lead to severe cortical dysplasia.
Nature Communications | 2014
Lori A. Orosco; Adam P. Ross; Staci L. Cates; Sean E. Scott; Dennis J. Wu; Jiho Sohn; David Pleasure; Samuel J. Pleasure; Iannis E. Adamopoulos; Konstantinos Zarbalis
Autism spectrum disorders (ASDs) are complex and heterogeneous developmental disabilities affecting an ever-increasing number of children worldwide. The diverse manifestations and complex, largely genetic etiology of ASDs pose a major challenge to the identification of unifying neuropathological features. Here we describe the neurodevelopmental defects in mice that carry deleterious alleles of the Wdfy3 gene, recently recognized as causative in ASDs. Loss of Wdfy3 leads to a regionally enlarged cerebral cortex resembling early brain overgrowth described in many children on the autism spectrum. In addition, affected mouse mutants display migration defects of cortical projection neurons, a recognized cause of epilepsy, which is significantly comorbid with autism. Our analysis of affected mouse mutants defines an important role for Wdfy3 in regulating neural progenitor divisions and neural migration in the developing brain. Furthermore, Wdfy3 is essential to cerebral expansion and functional organization while its loss-of-function results in pathological changes characteristic of ASDs.
Neural Development | 2012
Konstantinos Zarbalis; Youngshik Choe; Julie A. Siegenthaler; Lori A. Orosco; Samuel J. Pleasure
BackgroundTangential migration presents the primary mode of migration of cortical interneurons translocating into the cerebral cortex from subpallial domains. This migration takes place in multiple streams with the most superficial one located in the cortical marginal zone. While a number of forebrain-expressed molecules regulating this process have emerged, it remains unclear to what extent structures outside the brain, like the forebrain meninges, are involved.ResultsWe studied a unique Foxc1 hypomorph mouse model (Foxc1hith/hith) with meningeal defects and impaired tangential migration of cortical interneurons. We identified a territorial correlation between meningeal defects and disruption of interneuron migration along the adjacent marginal zone in these animals, suggesting that impaired meningeal integrity might be the primary cause for the observed migration defects. Moreover, we postulate that the meningeal factor regulating tangential migration that is affected in homozygote mutants is the chemokine Cxcl12. In addition, by using chromatin immunoprecipitation analysis, we provide evidence that the Cxcl12 gene is a direct transcriptional target of Foxc1 in the meninges. Further, we observe migration defects of a lesser degree in Cajal-Retzius cells migrating within the cortical marginal zone, indicating a less important role for Cxcl12 in their migration. Finally, the developmental migration defects observed in Foxc1hith/hith mutants do not lead to obvious differences in interneuron distribution in the adult if compared to control animals.ConclusionsOur results suggest a critical role for the forebrain meninges to promote during development the tangential migration of cortical interneurons along the cortical marginal zone and Cxcl12 as the factor responsible for this property.
Nature Neuroscience | 2017
Andrea L Gompers; Linda Su-Feher; Jacob Ellegood; Nycole A. Copping; M. Asrafuzzaman Riyadh; Tyler W. Stradleigh; Michael C. Pride; Melanie D Schaffler; A. Ayanna Wade; Rinaldo Catta-Preta; Iva Zdilar; Shreya Louis; Gaurav Kaushik; Brandon J. Mannion; Ingrid Plajzer-Frick; Veena Afzal; Axel Visel; Len A. Pennacchio; Diane E. Dickel; Jason P. Lerch; Jacqueline N. Crawley; Konstantinos Zarbalis; Jill L. Silverman; Alex S. Nord
The chromatin remodeling gene CHD8 represents a central node in neurodevelopmental gene networks implicated in autism. We examined the impact of germline heterozygous frameshift Chd8 mutation on neurodevelopment in mice. Chd8+/del5 mice displayed normal social interactions with no repetitive behaviors but exhibited cognitive impairment correlated with increased regional brain volume, validating that phenotypes of Chd8+/del5 mice overlap pathology reported in humans with CHD8 mutations. We applied network analysis to characterize neurodevelopmental gene expression, revealing widespread transcriptional changes in Chd8+/del5 mice across pathways disrupted in neurodevelopmental disorders, including neurogenesis, synaptic processes and neuroimmune signaling. We identified a co-expression module with peak expression in early brain development featuring dysregulation of RNA processing, chromatin remodeling and cell-cycle genes enriched for promoter binding by Chd8, and we validated increased neuronal proliferation and developmental splicing perturbation in Chd8+/del5 mice. This integrative analysis offers an initial picture of the consequences of Chd8 haploinsufficiency for brain development.
Annals of the Rheumatic Diseases | 2015
Iannis E. Adamopoulos; Erika Suzuki; Cheng Chi Chao; Dan Gorman; Sarvesh Adda; Emanual Maverakis; Konstantinos Zarbalis; Richard Geissler; Agelio Asio; Wendy M. Blumenschein; Terrill K. McClanahan; Rene Waal De Malefyt; M. Eric Gershwin; Edward P. Bowman
BACKGROUND Psoriatic arthritis (PsA) is a chronic inflammatory disease characterised by clinical features that include bone loss and epidermal hyperplasia. Aberrant cytokine expression has been linked to joint and skin pathology; however, it is unclear which cytokines are critical for disease initiation. Interleukin 17A (IL-17A) participates in many pathological immune responses; however, its role in PsA has not been fully elucidated. OBJECTIVE To determine the role of IL-17A in epidermal hyperplasia and bone destruction associated with psoriatic arthritis. DESIGN An in vivo gene transfer approach was used to investigate the role of IL-17A in animal models of inflammatory (collagen-induced arthritis) and non-inflammatory (receptor activator of NF-κB ligand (RANKL)-gene transfer) bone loss. RESULTS IL-17A gene transfer induced the expansion of IL-17RA(+)CD11b(+)Gr1(low) osteoclast precursors and a concomitant elevation of biomarkers indicative of bone resorption. This occurred at a time preceding noticeable joint inflammation, suggesting that IL-17A is critical for the induction of pathological bone resorption through direct activation of osteoclast precursors. Moreover, IL-17A induced a second myeloid population CD11b(+)Gr1(high) neutrophil-like cells, which was associated with cutaneous pathology including epidermal hyperplasia, parakeratosis and Munros microabscesses formation. CONCLUSIONS Collectively, these data support that IL-17A can play a key role in the pathogenesis of inflammation-associated arthritis and/or skin disease, as observed in PsA.
Developmental Biology | 2010
Setsu Endoh-Yamagami; Kameel M. Karkar; Scott R. May; Inma Cobos; Myo T. Thwin; Jason E. Long; Amir M. Ashique; Konstantinos Zarbalis; John L.R. Rubenstein; Andrew S. Peterson
Precise control of neuronal migration is essential for proper function of the brain. Taking a forward genetic screen, we isolated a mutant mouse with defects in interneuron migration. By genetic mapping, we identified a frame shift mutation in the pericentrin (Pcnt) gene. The Pcnt gene encodes a large centrosomal coiled-coil protein that has been implicated in schizophrenia. Recently, frame shift and premature termination mutations in the pericentrin (PCNT) gene were identified in individuals with Seckel syndrome and microcephalic osteodysplastic primordial dwarfism (MOPD II), both of which are characterized by greatly reduced body and brain sizes. The mouse Pcnt mutant shares features with the human syndromes in its overall growth retardation and reduced brain size. We found that dorsal lateral ganglionic eminence (dLGE)-derived olfactory bulb interneurons are severely affected and distributed abnormally in the rostral forebrain in the mutant. Furthermore, mutant interneurons exhibit abnormal migration behavior and RNA interference knockdown of Pcnt impairs cell migration along the rostal migratory stream (RMS) into the olfactory bulb. These findings indicate that pericentrin is required for proper migration of olfactory bulb interneurons and provide a developmental basis for association of pericentrin function with interneuron defects in human schizophrenia.
PLOS ONE | 2013
Adam P. Ross; M. Adela Mansilla; Youngshik Choe; Simon Helminski; Richard Sturm; Roy L. Maute; Scott R. May; Kamil K. Hozyasz; Piotr Wójcicki; Adrianna Mostowska; Beth Davidson; Iannis E. Adamopoulos; Samuel J. Pleasure; Jeffrey C. Murray; Konstantinos Zarbalis
Orofacial clefts are among the most common birth defects and result in an improper formation of the mouth or the roof of the mouth. Monosomy of the distal aspect of human chromosome 6p has been recognized as causative in congenital malformations affecting the brain and cranial skeleton including orofacial clefts. Among the genes located in this region is PAK1IP1, which encodes a nucleolar factor involved in ribosomal stress response. Here, we report the identification of a novel mouse line that carries a point mutation in the Pak1ip1 gene. Homozygous mutants show severe developmental defects of the brain and craniofacial skeleton, including a median orofacial cleft. We recovered this line of mice in a forward genetic screen and named the allele manta-ray (mray). Our findings prompted us to examine human cases of orofacial clefting for mutations in the PAK1IP1 gene or association with the locus. No deleterious variants in the PAK1IP1 gene coding region were recognized, however, we identified a borderline association effect for SNP rs494723 suggesting a possible role for the PAK1IP1 gene in human orofacial clefting.