Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kotaro Hama is active.

Publication


Featured researches published by Kotaro Hama.


Journal of Cell Biology | 2002

Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production

Yasuhiro Kishi; Akitsu Taira; Kotaro Hama; Naoshi Dohmae; Koji Takio; Takao Yamori; Gordon B. Mills; Keizo Inoue; Junken Aoki; Hiroyuki Arai

Autotaxin (ATX) is a tumor cell motility–stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5′-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein–coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist

Thomas M. McIntyre; Aaron V. Pontsler; Adriana R. Silva; Andy St. Hilaire; Yong Xu; Jerald C. Hinshaw; Guy A. Zimmerman; Kotaro Hama; Junken Aoki; Hiroyuki Arai; Glenn D. Prestwich

Lysophosphatidic acid (LPA) is a pluripotent lipid mediator acting through plasma membrane-associated LPAx receptors that transduce many, but not all, of its effects. We identify peroxisome proliferator-activated receptor γ (PPARγ) as an intracellular receptor for LPA. The transcription factor PPARγ is activated by several lipid ligands, but agonists derived from physiologic signaling pathways are unknown. We show that LPA, but not its precursor phosphatidic acid, displaces the drug rosiglitazone from the ligand-binding pocket of PPARγ. LPA and novel LPA analogs we made stimulated expression of a PPAR-responsive element reporter and the endogenous PPARγ-controlled gene CD36, and induced monocyte lipid accumulation from oxidized low-density lipoprotein via the CD36 scavenger receptor. The synthetic LPA analogs were effective PPARγ agonists, but were poor ones for LPA1, LPA2, or LPA3 receptor transfected cells. Transfection studies in yeast, which lack nuclear hormone and LPAx receptors, show that LPA directly activates PPARγ. A major growth factor of serum is LPA generated by thrombin-activated platelets, and media from activated platelets stimulated PPARγ function in transfected RAW264.7 macrophages. This function was suppressed by ectopic LPA-acyltransferase expression. LPA is a physiologic PPARγ ligand, placing PPARγ in a signaling pathway, and PPARγ is the first intracellular receptor identified for LPA. Moreover, LPA produced by stimulated plasma platelets activates PPARγ in nucleated cells.


Nature | 2005

LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing

Xiaoqin Ye; Kotaro Hama; James J. A. Contos; Brigitte Anliker; Asuka Inoue; Michael K. Skinner; Hiroshi Suzuki; Tomokazu Amano; Grace Kennedy; Hiroyuki Arai; Junken Aoki; Jerold Chun

Every successful pregnancy requires proper embryo implantation. Low implantation rate is a major problem during infertility treatments using assisted reproductive technologies. Here we report a newly discovered molecular influence on implantation through the lysophosphatidic acid (LPA) receptor LPA3 (refs 2–4). Targeted deletion of LPA3 in mice resulted in significantly reduced litter size, which could be attributed to delayed implantation and altered embryo spacing. These two events led to delayed embryonic development, hypertrophic placentas shared by multiple embryos and embryonic death. An enzyme demonstrated to influence implantation, cyclooxygenase 2 (COX2) (ref. 5), was downregulated in LPA3-deficient uteri during pre-implantation. Downregulation of COX2 led to reduced levels of prostaglandins E2 and I2 (PGE2 and PGI2), which are critical for implantation. Exogenous administration of PGE2 or carbaprostacyclin (a stable analogue of PGI2) into LPA3-deficient female mice rescued delayed implantation but did not rescue defects in embryo spacing. These data identify LPA3 receptor-mediated signalling as having an influence on implantation, and further indicate linkage between LPA signalling and prostaglandin biosynthesis.


Journal of Biological Chemistry | 2002

Serum Lysophosphatidic Acid Is Produced through Diverse Phospholipase Pathways

Junken Aoki; Akitsu Taira; Yasukazu Takanezawa; Yasuhiro Kishi; Kotaro Hama; Tatsuya Kishimoto; Koji Mizuno; Keijiro Saku; Ryo Taguchi; Hiroyuki Arai

Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological activities that accounts for many biological properties of serum. LPA is thought to be produced during serum formation based on the fact that the LPA level is much higher in serum than in plasma. In this study, to better understand the pathways of LPA synthesis in serum, we evaluated the roles of platelets, plasma, and phospholipases by measuring LPA using a novel enzyme-linked fluorometric assay. First, examination of platelet-depleted rats showed that half of the LPA in serum is produced via a platelet-dependent pathway. However, the amount of LPA released from isolated platelets after they are activated by thrombin or calcium ionophore accounted for only a small part of serum LPA. Most of the platelet-derived LPA was produced in a two-step process: lysophospholipids such as lysophosphatidylcholine (LPC), lysophosphatidylethanolamine, and lysophosphatidylserine, were released from activated rat platelets by the actions of two phospholipases, group IIA secretory phospholipase A2(sPLA2-IIA) and phosphatidylserine-specific phospholipase A1 (PS-PLA1), which were abundantly expressed in the cells. Then these lysophospholipids were converted to LPA by the action of plasma lysophospholipase D (lysoPLD). Second, accumulation of LPA in incubated plasma was strongly accelerated by the addition of recombinant lysoPLD with a concomitant decrease in LPC accumulation, indicating that the enzyme produces LPA by hydrolyzing LPC produced during the incubation. In addition, incubation of plasma isolated from human subjects who were deficient in lecithin-cholesterol acyltransferase (LCAT) did not result in increases of either LPC or LPA. The present study demonstrates multiple pathways for LPA production in serum and the involvement of several phospholipases, including PS-PLA1, sPLA2-IIA, LCAT, and lysoPLD.


Journal of Biological Chemistry | 2006

Autotaxin Is Overexpressed in Glioblastoma Multiforme and Contributes to Cell Motility of Glioblastoma by Converting Lysophosphatidylcholine TO Lysophosphatidic Acid

Yasuhiro Kishi; Shinichi Okudaira; M. Tanaka; Kotaro Hama; Dai Shida; Joji Kitayama; Takao Yamori; Junken Aoki; Takamitsu Fujimaki; Hiroyuki Arai

Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been repeatedly demonstrated, and thus, ATX is implicated in progression of tumor, the precise role of ATX expressed by tumor cells was unclear. In this study, we found that ATX is highly expressed in glioblastoma multiforme (GBM), the most malignant glioma due to its high infiltration into the normal brain parenchyma, but not in tissues from other brain tumors. In addition, LPA1, an LPA receptor responsible for LPA-driven cell motility, is predominantly expressed in GBM. One of the glioblastomas that showed the highest ATX expression (SNB-78), as well as ATX-stable transfectants, showed LPA1-dependent cell migration in response to LPA in both Boyden chamber and wound healing assays. Interestingly these ATX-expressing cells also showed chemotactic response to LPC. In addition, knockdown of the ATX level using small interfering RNA technique in SNB-78 cells suppressed their migratory response to LPC. These results suggest that the autocrine production of LPA by cancer cell-derived ATX and exogenously supplied LPC contribute to the invasiveness of cancer cells and that LPA1, ATX, and LPC-producing enzymes are potential targets for cancer therapy, including GBM.


Nature Structural & Molecular Biology | 2011

Crystal structure of autotaxin and insight into GPCR activation by lipid mediators

Hiroshi Nishimasu; Shinichi Okudaira; Kotaro Hama; Emiko Mihara; Naoshi Dohmae; Asuka Inoue; Ryuichiro Ishitani; Junichi Takagi; Junken Aoki; Osamu Nureki

Autotaxin (ATX, also known as Enpp2) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine to generate lysophosphatidic acid (LPA), a lipid mediator that activates G protein–coupled receptors to evoke various cellular responses. Here, we report the crystal structures of mouse ATX alone and in complex with LPAs with different acyl-chain lengths and saturations. These structures reveal that the multidomain architecture helps to maintain the structural rigidity of the lipid-binding pocket, which accommodates the respective LPA molecules in distinct conformations. They indicate that a loop region in the catalytic domain is a major determinant for the substrate specificity of the Enpp family enzymes. Furthermore, along with biochemical and biological data, these structures suggest that the produced LPAs are delivered from the active site to cognate G protein–coupled receptors through a hydrophobic channel.


Journal of Biochemistry | 2010

Autotaxin—an LPA producing enzyme with diverse functions

Keita Nakanaga; Kotaro Hama; Junken Aoki

Autotaxin (ATX) is an ecto-enzyme responsible for lysophosphatidic acid (LPA) production in blood. ATX is present in various biological fluids such as cerebrospinal and seminal fluids and accounts for bulk LPA production in these fluids. ATX is a member of the nucleotide pyrophosphatase/phosphodiesterase (NPP) family and was originally isolated from conditioned medium of melanoma cells as an autocrine motility stimulating factor. LPA, a second-generation lipid mediator, binds to its cognate G protein-coupled receptors through which it exerts a number of biological functions including influencing cell motility and proliferation stimulating activity. Some of the biological roles of LPA can be mediated by ATX. However, there are other LPA-producing pathways independent of ATX. The accumulating evidences for physiological and pathological functions of ATX strongly support that ATX is an important therapeutic target. This review summarizes the historical aspects, structural basis, pathophysiological functions identified in mice studies and clinical relevance discovered by measuring the blood ATX level in human. The general features and functions of each NPP family member will be also briefly reviewed. The presence of the ATX gene in other model organisms and recently developed ATX inhibitors, both of which will be definitely useful for further functional analysis of ATX, will also be mentioned.


Journal of Clinical Gastroenterology | 2007

Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C.

Naoko Watanabe; Hitoshi Ikeda; Kazuhiro Nakamura; Ryunosuke Ohkawa; Yukio Kume; Junken Aoki; Kotaro Hama; Shinichi Okudaira; M. Tanaka; Tomoaki Tomiya; Mikio Yanase; Kazuaki Tejima; Takako Nishikawa; Masahiro Arai; Hiroyuki Arai; Masao Omata; Kenji Fujiwara; Yutaka Yatomi

Objectives Recent accumulating evidence indicates that lysophosphatidic acid (LPA) is a lipid mediator, abundantly present in blood, with a wide range of biologic actions including the regulation of proliferation and contraction in liver cells. Although it is speculated that LPA might play a role in pathophysiologic processes in vivo, not only its role but also even a possible alteration in its blood concentration under specific diseases is essentially unknown. Autotaxin (ATX), originally purified as an autocrine motility factor for melanoma cells, was revealed to be a key enzyme in LPA synthesis. We determined LPA and ATX levels in the blood of patients with liver disease. Methods ATX activity was measured by determining choline with the substrate of lysophosphatidylcholine, and the LPA level by an enzymatic cycling method in 41 patients with chronic hepatitis C. Results The serum ATX activity and plasma LPA level were significantly increased in patients, and were correlated positively with serum hyaluronic acid, and negatively with platelets, albumin, and prothrombin time. The plasma LPA level was strongly correlated with serum ATX activity. There were significant correlations between the histologic stage of fibrosis and both the serum ATX activity and plasma LPA level. Conclusions The serum ATX activity and plasma LPA level are increased in chronic hepatitis C in association with liver fibrosis. Our study may provide the first evidence showing a significant increase of both ATX and LPA in the blood under a specific disease.


Laboratory Investigation | 2004

Aberrant expression of lysophosphatidic acid (LPA) receptors in human colorectal cancer

Dai Shida; Toshiaki Watanabe; Junken Aoki; Kotaro Hama; Joji Kitayama; Hirofumi Sonoda; Yasuhiro Kishi; Hironori Yamaguchi; Shin Sasaki; Akihiro Sako; Tsuyoshi Konishi; Hiroyuki Arai; Hirokazu Nagawa

Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse effects on various cells, that interacts with three G protein-coupled transmembrane receptors, LPA1, LPA2, and LPA3. The expression pattern and functions of these LPA receptors in various tumors have not been fully examined, except in ovarian cancer. To evaluate the LPA receptor expression profile in human colorectal cancer and in normal mucosa, we used real-time reverse transcription-polymerase chain reaction (RT-PCR) and measured the expression levels of LPA1, LPA2, and LPA3 messenger RNA (mRNA) in 26 colorectal cancers and 16 corresponding normal tissue samples. Normal epithelium expressed both LPA1 and LPA2 mRNA at similar levels. In comparison, colorectal cancers expressed LPA1 mRNA at a significantly lower level (0.3-fold; P<0.05), and LPA2 mRNA at a significantly higher level (three-fold; P<0.05), as compared with normal tissues. Thus, the ratio of LPA2/LPA1 increased markedly during malignant transformation (18-fold increase). LPA3 mRNA was expressed at only a low level in both normal and cancer tissues. We also assessed LPA2 expression immunohistochemically using a rat anti-LPA2 monoclonal antibody, and confirmed high expression of LPA2 in colorectal cancer at the protein level. As for LPA1, we examined Western blot analysis for 16 matched normal and cancer tissues. It revealed a significant decrease in the expression of LPA1 protein in cancer tissues compared to normal mucosa in nine of 16 cases, and in the remaining seven cases the expression levels was much the same. These results suggested that alteration of LPA receptor expression might be an important event in the development of colorectal cancer, and therefore, LPA and its receptors could be a chemopreventive target against colorectal cancer.


Journal of Lipid Research | 2006

ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells

Yutaka Masuda; Hiroyuki Itabe; Miho Odaki; Kotaro Hama; Yasuyuki Fujimoto; Masahiro Mori; Naoko Sasabe; Junken Aoki; Hiroyuki Arai; Tatsuya Takano

Adipose differentiation-related protein (ADRP) is a major protein associated with lipid droplets in various types of cells, including macrophage-derived foam cells and liver cells. However, the role of ADRP in the processes of formation and regression of these cells is not understood. When J774 murine macrophages were incubated with either VLDL or oleic acid, their content of both ADRP and triacylglycerol (TG) increased 3- to 4-fold. Induction of ADRP during TG accumulation was also observed in oleic acid-treated HuH-7 human liver cells. Addition of triacsin C, a potent inhibitor of acyl-CoA synthase, for 6 h decreased the amount of TG in VLDL-induced foam cells and oleic acid-treated liver cells; it decreased the amount of ADRP protein in parallel, indicating the amount of ADRP reduced during regression of the lipid-storing cells. Addition of a proteasome inhibitor during triacsin C treatment abolished the ADRP decrease and accumulated polyubiquitinated ADRP. In addition, the proteasome inhibitor reversed not only the degradation of ADRP but also TG reduction by triacsin C. These results suggest that cellular amounts of ADRP and TG regulate each other and that the ubiquitin-proteasome system is involved in degradation of ADRP during regression of lipid-storing cells.

Collaboration


Dive into the Kotaro Hama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge