Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinichi Okudaira is active.

Publication


Featured researches published by Shinichi Okudaira.


Journal of Biological Chemistry | 2006

Autotaxin Stabilizes Blood Vessels and Is Required for Embryonic Vasculature by Producing Lysophosphatidic Acid

M. Tanaka; Shinichi Okudaira; Yasuhiro Kishi; Ryunosuke Ohkawa; Sachiko Iseki; Masato S. Ota; Sumihare Noji; Yutaka Yatomi; Junken Aoki; Hiroyuki Arai

Autotaxin (ATX) is a cancer-associated motogen that has multiple biological activities in vitro through the production of bioactive small lipids, lysophosphatidic acid (LPA). ATX and LPA are abundantly present in circulating blood. However, their roles in circulation remain to be solved. To uncover the physiological role of ATX we analyzed ATX knock-out mice. In ATX-null embryos, early blood vessels appeared to form properly, but they failed to develop into mature vessels. As a result ATX-null mice are lethal around embryonic day 10.5. The phenotype is much more severe than those of LPA receptor knock-out mice reported so far. In cultured allantois explants, neither ATX nor LPA was angiogenic. However, both of them helped to maintain preformed vessels by preventing disassembly of the vessels that was not antagonized by Ki16425, an LPA receptor antagonist. In serum from heterozygous mice both lysophospholipase D activity and LPA level were about half of those from wild-type mice, showing that ATX is responsible for the bulk of LPA production in serum. The present study revealed a previously unassigned role of ATX in stabilizing vessels through novel LPA signaling pathways.


Biochimica et Biophysica Acta | 2008

Two pathways for lysophosphatidic acid production.

Junken Aoki; Asuka Inoue; Shinichi Okudaira

Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with G protein-coupled seven transmembrane receptors (GPCRs). So far, five GPCRs, designated LPA1-5, and, more recently, two additional GPCRs, GPR87 and P2Y5, have been identified as receptors for LPA. These LPA receptors can be classified into two families, the EDG and P2Y families, depending on their primary structures. Recent studies on gene targeting mice and family diseases of these receptors revealed that LPA is involved in both pathological and physiological states including brain development (LPA1), neuropathy pain (LPA1), lung fibrosis (LPA1), renal fibrosis (LPA1) protection against radiation-induced intestinal injury (LPA2), implantation (LPA3) and hair growth (P2Y5). LPA is produced both in cells and biological fluids, where multiple synthetic reactions occur. There are at least two pathways for LPA production. In serum or plasma, LPA is predominantly produced by a plasma enzyme called autotaxin (ATX). ATX is a multifunctional ectoenzyme and is involved in many patho-physiological conditions such as cancer, neuropathy pain, lymphocyte tracking in lymph nodes, obesity, diabetes and embryonic blood vessel formation. LPA is also produced from phosphatidic acid (PA) by its deacylation catalyzed by phospholipase A (PLA)-type enzymes. However, the physiological roles of this pathway as well as the enzymes involved remained to be solved. A number of phospholipase A1 and A2 isozymes could be involved in this pathway. One PA-selective PLA1 called mPA-PLA1alpha/LIPH is specifically expressed in hair follicles, where it has a critical role in hair growth by producing LPA through a novel LPA receptor called P2Y5.


Journal of Biological Chemistry | 2006

Autotaxin Is Overexpressed in Glioblastoma Multiforme and Contributes to Cell Motility of Glioblastoma by Converting Lysophosphatidylcholine TO Lysophosphatidic Acid

Yasuhiro Kishi; Shinichi Okudaira; M. Tanaka; Kotaro Hama; Dai Shida; Joji Kitayama; Takao Yamori; Junken Aoki; Takamitsu Fujimaki; Hiroyuki Arai

Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been repeatedly demonstrated, and thus, ATX is implicated in progression of tumor, the precise role of ATX expressed by tumor cells was unclear. In this study, we found that ATX is highly expressed in glioblastoma multiforme (GBM), the most malignant glioma due to its high infiltration into the normal brain parenchyma, but not in tissues from other brain tumors. In addition, LPA1, an LPA receptor responsible for LPA-driven cell motility, is predominantly expressed in GBM. One of the glioblastomas that showed the highest ATX expression (SNB-78), as well as ATX-stable transfectants, showed LPA1-dependent cell migration in response to LPA in both Boyden chamber and wound healing assays. Interestingly these ATX-expressing cells also showed chemotactic response to LPC. In addition, knockdown of the ATX level using small interfering RNA technique in SNB-78 cells suppressed their migratory response to LPC. These results suggest that the autocrine production of LPA by cancer cell-derived ATX and exogenously supplied LPC contribute to the invasiveness of cancer cells and that LPA1, ATX, and LPC-producing enzymes are potential targets for cancer therapy, including GBM.


Nature Structural & Molecular Biology | 2011

Crystal structure of autotaxin and insight into GPCR activation by lipid mediators

Hiroshi Nishimasu; Shinichi Okudaira; Kotaro Hama; Emiko Mihara; Naoshi Dohmae; Asuka Inoue; Ryuichiro Ishitani; Junichi Takagi; Junken Aoki; Osamu Nureki

Autotaxin (ATX, also known as Enpp2) is a secreted lysophospholipase D that hydrolyzes lysophosphatidylcholine to generate lysophosphatidic acid (LPA), a lipid mediator that activates G protein–coupled receptors to evoke various cellular responses. Here, we report the crystal structures of mouse ATX alone and in complex with LPAs with different acyl-chain lengths and saturations. These structures reveal that the multidomain architecture helps to maintain the structural rigidity of the lipid-binding pocket, which accommodates the respective LPA molecules in distinct conformations. They indicate that a loop region in the catalytic domain is a major determinant for the substrate specificity of the Enpp family enzymes. Furthermore, along with biochemical and biological data, these structures suggest that the produced LPAs are delivered from the active site to cognate G protein–coupled receptors through a hydrophobic channel.


Journal of Clinical Gastroenterology | 2007

Both plasma lysophosphatidic acid and serum autotaxin levels are increased in chronic hepatitis C.

Naoko Watanabe; Hitoshi Ikeda; Kazuhiro Nakamura; Ryunosuke Ohkawa; Yukio Kume; Junken Aoki; Kotaro Hama; Shinichi Okudaira; M. Tanaka; Tomoaki Tomiya; Mikio Yanase; Kazuaki Tejima; Takako Nishikawa; Masahiro Arai; Hiroyuki Arai; Masao Omata; Kenji Fujiwara; Yutaka Yatomi

Objectives Recent accumulating evidence indicates that lysophosphatidic acid (LPA) is a lipid mediator, abundantly present in blood, with a wide range of biologic actions including the regulation of proliferation and contraction in liver cells. Although it is speculated that LPA might play a role in pathophysiologic processes in vivo, not only its role but also even a possible alteration in its blood concentration under specific diseases is essentially unknown. Autotaxin (ATX), originally purified as an autocrine motility factor for melanoma cells, was revealed to be a key enzyme in LPA synthesis. We determined LPA and ATX levels in the blood of patients with liver disease. Methods ATX activity was measured by determining choline with the substrate of lysophosphatidylcholine, and the LPA level by an enzymatic cycling method in 41 patients with chronic hepatitis C. Results The serum ATX activity and plasma LPA level were significantly increased in patients, and were correlated positively with serum hyaluronic acid, and negatively with platelets, albumin, and prothrombin time. The plasma LPA level was strongly correlated with serum ATX activity. There were significant correlations between the histologic stage of fibrosis and both the serum ATX activity and plasma LPA level. Conclusions The serum ATX activity and plasma LPA level are increased in chronic hepatitis C in association with liver fibrosis. Our study may provide the first evidence showing a significant increase of both ATX and LPA in the blood under a specific disease.


Biochimie | 2010

Biological roles of lysophosphatidic acid signaling through its production by autotaxin

Shinichi Okudaira; Hiroshi Yukiura; Junken Aoki

Lysophosphatidic acid (LPA) exhibits a wide variety of biological functions as a bio-active lysophospholipid through G-protein-coupled receptors specific to LPA. Currently at least six LPA receptors are identified, named LPA(1) to LPA(6), while the existence of other LPA receptors has been suggested. From studies on knockout mice and hereditary diseases of these LPA receptors, it is now clear that LPA is involved in various biological processes including brain development and embryo implantation, as well as patho-physiological conditions including neuropathic pain and pulmonary and renal fibrosis. Unlike sphingosine 1-phosphate, a structurally similar bio-active lysophospholipid to LPA and produced intracellularly, LPA is produced by multiple extracellular degradative routes. A plasma enzyme called autotaxin (ATX) is responsible for the most of LPA production in our bodies. ATX converts lysophospholipids such as lysophosphatidylcholine to LPA by its lysophospholipase D activity. Recent studies on ATX have revealed new aspects of LPA. In this review, we highlight recent advances in our understanding of LPA functions and several aspects of ATX, including its activity, expression, structure, biochemical properties, the mechanism by which it stimulates cell motility and its pahto-physiological function through LPA production.


American Journal of Pathology | 2008

Involvement of the lysophosphatidic acid-generating enzyme autotaxin in lymphocyte-endothelial cell interactions.

Tae Nakasaki; Toshiyuki Tanaka; Shinichi Okudaira; Michi Hirosawa; Eiji Umemoto; Kazuhiro Otani; Soojung Jin; Zhongbin Bai; Haruko Hayasaka; Yoshinori Fukui; Katsuyuki Aozasa; Naoya Fujita; Takashi Tsuruo; Keiichi Ozono; Junken Aoki; Masayuki Miyasaka

Autotaxin (ATX) is a secreted protein with lysophospholipase D activity that generates lysophosphatidic acid (LPA) from lysophosphatidylcholine. Here we report that functional ATX is selectively expressed in high endothelial venules (HEVs) of both lymph nodes and Peyers patches. ATX expression was developmentally regulated and coincided with lymphocyte recruitment to the lymph nodes. In adults, ATX expression was independent of HEV-expressed chemokines such as CCL21 and CXCL13, innate immunity signals including those via TLR4 or MyD88, and of the extent of lymphocyte trafficking across the HEVs. ATX expression was induced in venules at sites of chronic inflammation. Receptors for the ATX enzyme product LPA were constitutively expressed in HEV endothelial cells (ECs). In vitro, LPA induced strong morphological changes in HEV ECs. Forced ATX expression caused cultured ECs to respond to lysophosphatidylcholine, up-regulating lymphocyte binding to the ECs in a LPA receptor-dependent manner under both static and flow conditions. Although in vivo depletion of circulating ATX did not affect lymphocyte trafficking into the lymph nodes, we surmise, based on the above data, that ATX expressed by HEVs acts on HEVs in situ to facilitate lymphocyte binding to ECs and that ATX in the general circulation does not play a major role in this process. Tissue-specific inactivation of ATX will verify this hypothesis in future studies of its mechanism of action.


British Journal of Haematology | 2008

Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma

Akiko Masuda; Kazuhiro Nakamura; Koji Izutsu; Koji Igarashi; Ryunosuke Ohkawa; Masahiro Jona; Katsumi Higashi; Hiromitsu Yokota; Shinichi Okudaira; Tatsuya Kishimoto; Takuro Watanabe; Yukako Koike; Hitoshi Ikeda; Yasushi Kozai; Mineo Kurokawa; Junken Aoki; Yutaka Yatomi

Autotaxin (ATX) is a tumour cell motility‐stimulating factor originally isolated from melanoma cell supernatants. ATX is identical to lysophospholipase D, which produces a bioactive lipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine. ATX is overexpressed in various malignancies, including Hodgkin lymphoma, and ATX may stimulate tumour progression via LPA production. The present study measured the serum ATX antigen levels in patients with haematological malignancies using a recently developed automated enzyme immunoassay. The serum ATX antigen levels in patients with B‐cell neoplasms, especially follicular lymphoma (FL), were higher than those in healthy subjects. Serum ATX antigen levels in FL patients were associated with tumour burden and changed in parallel with the patients’ clinical courses. The serum ATX antigen levels were little affected by inflammation, unlike the soluble interleukin‐2 receptor and β2‐microglobulin levels. As expected, the plasma LPA levels in FL patients were correlated with the serum ATX antigen levels. Given that leukaemic tumour cells from FL patients expressed ATX, the shedding of ATX from lymphoma cells probably leads to the elevation of serum ATX antigen levels. Our results suggest that the serum ATX antigen level may be a promising and novel marker for FL.


Journal of Immunology | 2013

Constitutive Lymphocyte Transmigration across the Basal Lamina of High Endothelial Venules Is Regulated by the Autotaxin/Lysophosphatidic Acid Axis

Zhongbin Bai; Linjun Cai; Eiji Umemoto; Akira Takeda; Kazuo Tohya; Yutaka Komai; Punniyakoti T. Veeraveedu; Erina Hata; Yuki Sugiura; Akiko Kubo; Makoto Suematsu; Haruko Hayasaka; Shinichi Okudaira; Junken Aoki; Toshiyuki Tanaka; Harald M. H. G. Albers; Huib Ovaa; Masayuki Miyasaka

Lymphocyte extravasation from the high endothelial venules (HEVs) of lymph nodes is crucial for the maintenance of immune homeostasis, but its molecular mechanism remains largely unknown. In this article, we report that lymphocyte transmigration across the basal lamina of the HEVs is regulated, at least in part, by autotaxin (ATX) and its end-product, lysophosphatidic acid (LPA). ATX is an HEV-associated ectoenzyme that produces LPA from lysophosphatidylcholine (LPC), which is abundant in the systemic circulation. In agreement with selective expression of ATX in HEVs, LPA was constitutively and specifically detected on HEVs. In vivo, inhibition of ATX impaired the lymphocyte extravasation from HEVs, inducing lymphocyte accumulation within the endothelial cells (ECs) and sub-EC compartment; this impairment was abrogated by LPA. In vitro, both LPA and LPC induced a marked increase in the motility of HEV ECs; LPC’s effect was abrogated by ATX inhibition, whereas LPA’s effect was abrogated by ATX/LPA receptor inhibition. In an in vitro transmigration assay, ATX inhibition impaired the release of lymphocytes that had migrated underneath HEV ECs, and these defects were abrogated by LPA. This effect of LPA was dependent on myosin II activity in the HEV ECs. Collectively, these results strongly suggest that HEV-associated ATX generates LPA locally; LPA, in turn, acts on HEV ECs to increase their motility, promoting dynamic lymphocyte–HEV interactions and subsequent lymphocyte transmigration across the basal lamina of HEVs at steady state.


Journal of Biological Chemistry | 2011

Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish.

Hiroshi Yukiura; Kotaro Hama; Keita Nakanaga; M. Tanaka; Yoichi Asaoka; Shinichi Okudaira; Naoaki Arima; Asuka Inoue; Takafumi Hashimoto; Hiroyuki Arai; Atsuo Kawahara; Hiroshi Nishina; Junken Aoki

Background: Autotaxin is essential for vascular development in mice, but the underlying mechanism remains unknown. Results: Autotaxin had similar vascular functions in zebrafish. Furthermore, suppression of lysophosphatidic acid receptors (LPA1 and LPA4) led to similar vascular defects. Conclusion: Autotaxin exerts its vascular functions by activating LPA1 and/or LPA4 in zebrafish. Significance: LPA is a critical factor for regulating angiogenesis in vertebrates. Autotaxin (ATX) is a multifunctional ecto-type phosphodiesterase that converts lysophospholipids, such as lysophosphatidylcholine, to lysophosphatidic acid (LPA) by its lysophospholipase D activity. LPA is a lipid mediator with diverse biological functions, most of which are mediated by G protein-coupled receptors specific to LPA (LPA1–6). Recent studies on ATX knock-out mice revealed that ATX has an essential role in embryonic blood vessel formation. However, the underlying molecular mechanisms remain to be solved. A data base search revealed that ATX and LPA receptors are conserved in wide range of vertebrates from fishes to mammals. Here we analyzed zebrafish ATX (zATX) and LPA receptors both biochemically and functionally. zATX, like mammalian ATX, showed lysophospholipase D activity to produce LPA. In addition, all zebrafish LPA receptors except for LPA5a and LPA5b were found to respond to LPA. Knockdown of zATX in zebrafish embryos by injecting morpholino antisense oligonucleotides (MOs) specific to zATX caused abnormal blood vessel formation, which has not been observed in other morphant embryos or mutants with vascular defects reported previously. In ATX morphant embryos, the segmental arteries sprouted normally from the dorsal aorta but stalled in midcourse, resulting in aberrant vascular connection around the horizontal myoseptum. Similar vascular defects were not observed in embryos in which each single LPA receptor was attenuated by using MOs. Interestingly, similar vascular defects were observed when both LPA1 and LPA4 functions were attenuated by using MOs and/or a selective LPA receptor antagonist, Ki16425. These results demonstrate that the ATX-LPA-LPAR axis is a critical regulator of embryonic vascular development that is conserved in vertebrates.

Collaboration


Dive into the Shinichi Okudaira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge