Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kouki Morizono is active.

Publication


Featured researches published by Kouki Morizono.


Cells Tissues Organs | 2003

Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow

Daniel A. De Ugarte; Kouki Morizono; Amir Elbarbary; Zeni Alfonso; Patricia A. Zuk; Min Zhu; Jason L. Dragoo; Peter Ashjian; Bert Thomas; Prosper Benhaim; Irvin S. Y. Chen; John K. Fraser; Marc H. Hedrick

Our laboratory has recently characterized a population of cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multi-lineage potential similar to bone-marrow-derived mesenchymal stem cells (MSCs). This study is the first comparison of PLA cells and MSCs isolated from the same patient. No significant differences were observed for yield of adherent stromal cells, growth kinetics, cell senescence, multi-lineage differentiation capacity, and gene transduction efficiency. Adipose tissue is an abundant and easily procured source of PLA cells, which have a potential like MSCs for use in tissue-engineering applications and as gene delivery vehicles.


Cancer Research | 2010

The Sympathetic Nervous System Induces a Metastatic Switch in Primary Breast Cancer

Erica K. Sloan; Saul J. Priceman; Benjamin F. Cox; Stephanie Yu; Matthew A. Pimentel; Veera Tangkanangnukul; Jesusa M.G. Arevalo; Kouki Morizono; Breanne D.W. Karanikolas; Lily Wu; Anil K. Sood; Steven W. Cole

Metastasis to distant tissues is the chief driver of breast cancer-related mortality, but little is known about the systemic physiologic dynamics that regulate this process. To investigate the role of neuroendocrine activation in cancer progression, we used in vivo bioluminescence imaging to track the development of metastasis in an orthotopic mouse model of breast cancer. Stress-induced neuroendocrine activation had a negligible effect on growth of the primary tumor but induced a 30-fold increase in metastasis to distant tissues including the lymph nodes and lung. These effects were mediated by β-adrenergic signaling, which increased the infiltration of CD11b(+)F4/80(+) macrophages into primary tumor parenchyma and thereby induced a prometastatic gene expression signature accompanied by indications of M2 macrophage differentiation. Pharmacologic activation of β-adrenergic signaling induced similar effects, and treatment of stressed animals with the β-antagonist propranolol reversed the stress-induced macrophage infiltration and inhibited tumor spread to distant tissues. The effects of stress on distant metastasis were also inhibited by in vivo macrophage suppression using the CSF-1 receptor kinase inhibitor GW2580. These findings identify activation of the sympathetic nervous system as a novel neural regulator of breast cancer metastasis and suggest new strategies for antimetastatic therapies that target the β-adrenergic induction of prometastatic gene expression in primary breast cancers.


Nature Medicine | 2005

Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection

Kouki Morizono; Yiming Xie; Gene-Errol Ringpis; Mai Johnson; Hoorig Nassanian; Benhur Lee; Lily Wu; Irvin S. Y. Chen

Targeted gene transduction to specific tissues and organs through intravenous injection would be the ultimate preferred method of gene delivery. Here, we report successful targeting in a living animal through intravenous injection of a lentiviral vector pseudotyped with a modified chimeric Sindbis virus envelope (termed m168). m168 pseudotypes have high titer and high targeting specificity and, unlike other retroviral pseudotypes, have low nonspecific infectivity in liver and spleen. A mouse cancer model of metastatic melanoma was used to test intravenous targeting with m168. Human P-glycoprotein was ectopically expressed on the surface of melanoma cells and targeted by the m168 pseudotyped lentiviral vector conjugated with antibody specific for P-glycoprotein. m168 pseudotypes successfully targeted metastatic melanoma cells growing in the lung after systemic administration by tail vein injection. Further development of this targeting technology should result in applications not only for cancers but also for genetic, infectious and immune diseases.


Human Gene Therapy | 2003

Multilineage Cells from Adipose Tissue as Gene Delivery Vehicles

Kouki Morizono; Daniel A. De Ugarte; Min Zhu; Pat Zuk; Amir Elbarbary; Peter Ashjian; Prosper Benhaim; Irvin S. Y. Chen; Marc H. Hedrick

We have characterized a population of mesenchymal progenitor cells from adipose tissue, termed processed lipoaspirate (PLA) cells, which have multilineage potential similar to bone marrow-derived mesenchymal stem cells and are also easily expanded in culture. The primary benefit of using adipose tissue as a source of multilineage progenitor cells is its relative abundance and ease of procurement. We examined the infection of PLA cells with adenoviral, oncoretroviral, and lentiviral vectors. We demonstrate that PLA cells can be transduced with lentiviral vectors at high efficiency. PLA cells maintain transgene expression after differentiation into adipogenic and osteogenic lineages after lentiviral transduction. Therefore, PLA cells and lentiviral vectors may be an efficient combination for use as a therapeutic gene delivery vehicle.


Journal of Virology | 2001

Antibody-Directed Targeting of Retroviral Vectors via Cell Surface Antigens

Kouki Morizono; Gregory Bristol; Yiming Xie; Sam K. P. Kung; Irvin S. Y. Chen

ABSTRACT Targeted stable transduction of specific cells is a highly desirable goal for gene therapy applications. We report an efficient and broadly applicable approach for targeting retroviral vectors to specific cells. We find that the envelope of the alphavirus Sindbis virus can pseudotype human immunodeficiency virus type 1- and murine leukemia virus-based retroviral vectors. When modified to contain the Fc-binding domain of protein A, this envelope gives a significant enhancement in specificity in combination with antibodies specific for HLA and CD4 relative to that without antibody. Unlike previous targeting strategies for retroviral transduction, the virus titers are relatively high and stable and can be further increased by ultracentrifugation. This study provides proof of principle for a targeting strategy that would be generally useful for many gene therapy applications.


Cell Host & Microbe | 2011

The Soluble Serum Protein Gas6 Bridges Virion Envelope Phosphatidylserine to the TAM Receptor Tyrosine Kinase Axl to Mediate Viral Entry

Kouki Morizono; Yiming Xie; Tove Olafsen; Benhur Lee; Asim Dasgupta; Anna M. Wu; Irvin S. Y. Chen

Virus entry into cells is typically initiated by binding of virally encoded envelope proteins to specific cell surface receptors. Studying infectivity of lentivirus pseudotypes lacking envelope binding, we still observed high infectivity for some cell types. On further investigation, we discovered that this infectivity is conferred by the soluble bovine protein S in fetal calf serum, or Gas6, its human homolog. Gas6 enhances native infectivity of pseudotypes of multiple viral envelope proteins. Gas6 mediates binding of the virus to target cells by bridging virion envelope phosphatidylserine to Axl, a TAM receptor tyrosine kinase on target cells. Phagocytic clearance of apoptotic cells is known to involve bridging by Gas6. Replication of vaccinia virus, which was previously reported to use apoptotic mimicry to enter cells, is also enhanced by Gas6. These results reveal an alternative molecular mechanism of viral entry that can broaden host range and enhance infectivity of enveloped viruses.


Human Gene Therapy | 2003

Efficient lentiviral vectors for short hairpin RNA delivery into human cells.

Dong Sung An; Yiming Xie; Si Hua Mao; Kouki Morizono; Sam K. P. Kung; Irvin S. Y. Chen

RNA interference is an evolutionarily conserved process of gene silencing that in plants serves as a natural defense mechanism against exogenous viral agents. RNA interference is becoming an important tool for the study of biological processes through reverse genetics and has potential for therapeutic applications in humans; however, effective delivery is still a major issue. Small interfering RNA (siRNA) and short hairpin RNA (shRNA) have been introduced into cells by transfection of chemically synthesized and RNA expression via plasmid cassettes utilizing RNA polymerase III transcription. The employment of siRNA/shRNA for gene knockout requires an efficient stable transfection or transduction process. Here, we report the successful construction of lentiviral vectors to express shRNA stably in human cells. We demonstrate that lentiviral vectors expressing siRNA directed to the reporter gene luciferase, when stably transduced into human cells without drug selection, are capable of protecting the cells from infection by a lentiviral vector encoding humanized firefly luciferase as a reporter gene. We observed 16- to 43-fold reduction of gene expression in infected cells transduced with shRNA vectors relative to cells transduced with control vectors. This model system demonstrates the utility of lentiviral vectors to stably express shRNA as both a cellular gene knockout tool and as a means to inhibit exogenous infectious agents such as viruses in human cells.


Journal of Virology | 2014

Role of Phosphatidylserine Receptors in Enveloped Virus Infection

Kouki Morizono; Irvin S. Y. Chen

ABSTRACT We recently demonstrated that a soluble protein, Gas6, can facilitate viral entry by bridging viral envelope phosphatidylserine to Axl, a receptor tyrosine kinase expressed on target cells. The interaction between phosphatidylserine, Gas6, and Axl was originally shown to be a molecular mechanism through which phagocytes recognize phosphatidylserine exposed on dead cells. Since our initial report, several groups have confirmed that Axl/Gas6, as well as other phosphatidylserine receptors, facilitate entry of dengue, West Nile, and Ebola viruses. Virus binding by viral envelope phosphatidylserine is now a viral entry mechanism generalized to many families of viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most of the known human phosphatidylserine-recognizing molecules, including MFG-E8, TIM-1, -3, and -4, CD300a, BAI1, and stabilin-1 and -2, for their abilities to facilitate virus binding and infection. Using pseudotyped lentiviral vectors, we found that a soluble phosphatidylserine-binding protein, MFG-E8, enhances transduction. Cell surface receptors TIM-1 and -4 also enhance virus binding/transduction. The extent of enhancement by these molecules varies, depending on the type of pseudotyping envelope proteins. Mutated MFG-E8, which binds viral envelope phosphatidylserine without bridging virus to cells, but, surprisingly, not annexin V, which has been used to block phagocytosis of dead cells by concealing phosphatidylserine, efficiently blocks these phosphatidylserine-dependent viral entry mechanisms. These results provide insight into understanding the role of viral envelope phosphatidylserine in viral infection. IMPORTANCE Envelope phosphatidylserine has previously been shown to be important for replication of various envelope viruses, but details of this mechanism(s) were unclear. We were the first to report that a bifunctional serum protein, Gas6, bridges envelope phosphatidylserine to a cell surface receptor, Axl. Recent studies demonstrated that many envelope viruses, including vaccinia, dengue, West Nile, and Ebola viruses, utilize Axl/Gas6 to facilitate their entry, suggesting that the phosphatidylserine-mediated viral entry mechanism can be shared by various enveloped viruses. In addition to Axl/Gas6, various molecules are known to recognize phosphatidylserine; however, the effects of these molecules on virus binding and entry have not been comprehensively evaluated and compared. In this study, we examined most human phosphatidylserine-recognizing molecules for their abilities to facilitate viral infection. The results provide insights into the role(s) of envelope phosphatidylserine in viral infection, which can be applicable to the development of novel antiviral reagents that block phosphatidylserine-mediated viral entry.


Brain Behavior and Immunity | 2012

Chronic stress enhances progression of acute lymphoblastic leukemia via β-adrenergic signaling.

Donald M. Lamkin; Erica K. Sloan; Ami Patel; Beverley S. Chiang; Matthew A. Pimentel; Jeffrey C.Y. Ma; Jesusa M.G. Arevalo; Kouki Morizono; Steve W. Cole

Clinical studies suggest that stress-related biobehavioral factors can accelerate the progression of hematopoietic cancers such as acute lymphoblastic leukemia (ALL), but it is unclear whether such effects are causal or what biological pathways mediate such effects. Given the network of sympathetic nervous system (SNS) fibers that innervates the bone marrow to regulate normal (non-leukemic) hematopoietic progenitor cells, we tested the possibility that stress-induced SNS signaling might also affect ALL progression. In an orthotopic mouse model, Nalm-6 human pre-B ALL cells were transduced with the luciferase gene for longitudinal bioluminescent imaging and injected i.v. into male SCID mice for bone marrow engraftment. Two weeks of daily restraint stress significantly enhanced ALL tumor burden and dissemination in comparison to controls, and this effect was blocked by the β-adrenergic antagonist, propranolol. Although Nalm-6 ALL cells expressed mRNA for β1- and β3-adrenergic receptors, they showed no evidence of cAMP signaling in response to norepinephrine, and norepinephrine failed to enhance Nalm-6 proliferation in vitro. These results show that chronic stress can accelerate the progression of human pre-B ALL tumor load via a β-adrenergic signaling pathway that likely involves indirect regulation of ALL biology via alterations in the function of other host cell types such as immune cells or the bone marrow microenvironment.


International Journal of Cancer | 2007

Modulating metastasis by a lymphangiogenic switch in prostate cancer

Ebba Brakenhielm; Jeremy B. Burton; Mai Johnson; Nelson Chavarria; Kouki Morizono; Irvin S. Y. Chen; Kari Alitalo; Lily Wu

Prostate cancer dissemination is difficult to detect in the clinic, and few treatment options exist for patients with advanced‐stage disease. Our aim was to investigate the role of tumor lymphangiogenesis during metastasis. Further, we implemented a noninvasive molecular imaging technique to facilitate the assessment of the metastatic process. The metastatic potentials of several human prostate cancer xenograft models, LAPC‐4, LAPC‐9, PC3 and CWR22Rv‐1 were compared. The cells were labeled with luciferase, a bioluminescence imaging reporter gene, to enable optical imaging. After tumor implantation the animals were examined weekly during several months for the appearance of metastases. Metastatic lesions were confirmed by immunohistochemistry. Additionally, the angiogenic and lymphangiogenic profiles of the tumors were characterized. To confirm the role of lymphangiogenesis in mediating metastasis, the low‐metastatic LAPC‐9 tumor cells were engineered to overexpress VEGF‐C, and the development of metastases was evaluated. Our results show CWR22Rv‐1 and PC3 tumor cell lines to be more metastatic than LAPC‐4, which in turn disseminates more readily than LAPC‐9. The difference in metastatic potential correlated with the endogenous production levels of lymphangiogenic growth factor VEGF‐C and the presence of tumor lymphatics. In agreement, induced overexpression of VEGF‐C in LAPC‐9 enhanced tumor lymphangiogenesis leading to the development of metastatic lesions. Taken together, our studies, based on a molecular imaging approach for semiquantitative detection of micrometastases, point to an important role of tumor lymphatics in the metastatic process of human prostate cancer. In particular, VEGF‐C seems to play a key role in prostate cancer metastasis.

Collaboration


Dive into the Kouki Morizono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yiming Xie

University of California

View shared research outputs
Top Co-Authors

Avatar

Benhur Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nonia Pariente

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Dong Sung An

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lily Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Si Hua Mao

University of California

View shared research outputs
Top Co-Authors

Avatar

Sven de Vos

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge