Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sarah M. Winnicki is active.

Publication


Featured researches published by Sarah M. Winnicki.


Science | 2014

Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak

Stephen K. Gire; Augustine Goba; Kristian G. Andersen; Rachel Sealfon; Daniel J. Park; Lansana Kanneh; Simbirie Jalloh; Mambu Momoh; Mohamed Fullah; Gytis Dudas; Shirlee Wohl; Lina M. Moses; Nathan L. Yozwiak; Sarah M. Winnicki; Christian B. Matranga; Christine M. Malboeuf; James Qu; Adrianne D. Gladden; Stephen F. Schaffner; Xiao Yang; Pan Pan Jiang; Mahan Nekoui; Andres Colubri; Moinya Ruth Coomber; Mbalu Fonnie; Alex Moigboi; Michael Gbakie; Fatima K. Kamara; Veronica Tucker; Edwin Konuwa

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.


The New England Journal of Medicine | 2014

Clinical Illness and Outcomes in Patients with Ebola in Sierra Leone

John S. Schieffelin; Augustine Goba; Michael Gbakie; Andres Colubri; Lansana Kanneh; Alex Moigboi; Mambu Momoh; Mohammed Fullah; Sarah M. Winnicki; Pan Pan Jiang; David Kargbo; Simbirie Jalloh; Mbalu Fonnie; V. Sinnah; I. French; Alice Kovoma; V. Tucker; Edwin Konuwa; Josephine Sellu; Ibrahim Mustapha; Momoh Foday; Mohamed Yillah; Franklyn Kanneh; Sidiki Saffa; Christian T. Happi; Abstr Act

BACKGROUND Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. METHODS We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. RESULTS Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. CONCLUSIONS The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).


Cell | 2013

Identifying Recent Adaptations in Large-Scale Genomic Data

Shamai Aaron Grossman; Kristian G. Andersen; Ilya Shlyakhter; Shervin Tabrizi; Sarah M. Winnicki; Angela Yen; Daniel J. Park; Dustin Shahab Griesemer; Elinor K. Karlsson; Moran N. Cabili; Richard A. Adegbola; Rameshwar N. K. Bamezai; Adrian V. S. Hill; Fredrik O. Vannberg; John L. Rinn; Eric S. Lander; Stephen F. Schaffner; Pardis C. Sabeti

Although several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes (1000G) Project and the composite of multiple signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes 35 high-scoring nonsynonymous variants, 59 variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate nonsynonymous variant in Toll-like receptor 5 (TLR5) and show that it leads to altered NF-κB signaling in response to bacterial flagellin. PAPERFLICK:


Cell | 2015

Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

Daniel J. Park; Gytis Dudas; Shirlee Wohl; Augustine Goba; Shannon Whitmer; Kristian G. Andersen; Rachel Sealfon; Jason T. Ladner; Jeffrey R. Kugelman; Christian B. Matranga; Sarah M. Winnicki; James Qu; Stephen K. Gire; Adrianne Gladden-Young; Simbirie Jalloh; Dolo Nosamiefan; Nathan L. Yozwiak; Lina M. Moses; Pan-Pan Jiang; Aaron E. Lin; Stephen F. Schaffner; Brian Bird; Jonathan S. Towner; Mambu Mamoh; Michael Gbakie; Lansana Kanneh; David Kargbo; James L.B. Massally; Fatima K. Kamara; Edwin Konuwa

Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Nature | 2017

Zika virus evolution and spread in the Americas

Hayden C. Metsky; Christian B. Matranga; Shirlee Wohl; Stephen F. Schaffner; Catherine A. Freije; Sarah M. Winnicki; Kendra West; James Qu; Mary Lynn Baniecki; Adrianne Gladden-Young; Aaron E. Lin; Christopher Tomkins-Tinch; Simon H. Ye; Daniel J. Park; Cynthia Y. Luo; Kayla G. Barnes; Rickey R. Shah; Bridget Chak; Giselle Barbosa-Lima; Edson Delatorre; Yasmine Rangel Vieira; Lauren M. Paul; Amanda L. Tan; Carolyn M. Barcellona; Mario C. Porcelli; Chalmers Vasquez; Andrew Cannons; Marshall R. Cone; Kelly N. Hogan; Edgar W. Kopp

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Nature | 2017

Genomic epidemiology reveals multiple introductions of Zika virus into the United States

Nathan D. Grubaugh; Jason T. Ladner; Moritz U. G. Kraemer; Gytis Dudas; Amanda L. Tan; Karthik Gangavarapu; Michael R. Wiley; Stephen White; Julien Thézé; Diogo M. Magnani; Karla Prieto; Daniel Reyes; Andrea M. Bingham; Lauren M. Paul; Refugio Robles-Sikisaka; Glenn Oliveira; Darryl Pronty; Carolyn M. Barcellona; Hayden C. Metsky; Mary Lynn Baniecki; Kayla G. Barnes; Bridget Chak; Catherine A. Freije; Adrianne Gladden-Young; Andreas Gnirke; Cynthia Y. Luo; Bronwyn MacInnis; Christian B. Matranga; Daniel J. Park; James Qu

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016—several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Cell | 2015

Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus

Kristian G. Andersen; B. Jesse Shapiro; Christian B. Matranga; Rachel Sealfon; Aaron E. Lin; Lina M. Moses; Onikepe A. Folarin; Augustine Goba; Ikponmwonsa Odia; Philomena E. Ehiane; Mambu Momoh; Eleina M. England; Sarah M. Winnicki; Luis M. Branco; Stephen K. Gire; Eric Phelan; Ridhi Tariyal; Ryan Tewhey; Omowunmi Omoniwa; Mohammed Fullah; Richard Fonnie; Mbalu Fonnie; Lansana Kanneh; Simbirie Jalloh; Michael Gbakie; Sidiki Saffa; Kandeh Karbo; Adrianne D. Gladden; James Qu; Matthew Stremlau

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.


Nature | 2017

Virus genomes reveal factors that spread and sustained the Ebola epidemic

Gytis Dudas; Luiz Max Carvalho; Trevor Bedford; Andrew J. Tatem; Guy Baele; Nuno Rodrigues Faria; Daniel J. Park; Jason T. Ladner; Armando Arias; Danny A. Asogun; Filip Bielejec; Sarah Caddy; Matthew Cotten; Jonathan D’ambrozio; Simon Dellicour; Antonino Di Caro; Joseph W. Diclaro; Sophie Duraffour; Michael J. Elmore; Lawrence S. Fakoli; Ousmane Faye; Merle L. Gilbert; Sahr M. Gevao; Stephen K. Gire; Adrianne Gladden-Young; Andreas Gnirke; Augustine Goba; Donald S. Grant; Bart L. Haagmans; Julian A. Hiscox

The 2013–2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Genome Biology | 2014

Enhanced methods for unbiased deep sequencing of Lassa and Ebola RNA viruses from clinical and biological samples

Christian B. Matranga; Kristian G. Andersen; Sarah M. Winnicki; Michele Busby; Adrianne D. Gladden; Ryan Tewhey; Matthew Stremlau; Aaron M. Berlin; Stephen K. Gire; Eleina M. England; Lina M. Moses; Tarjei S. Mikkelsen; Ikponmwonsa Odia; Philomena E. Ehiane; Onikepe A. Folarin; Augustine Goba; S Humarr Kahn; Donald S. Grant; Anna N. Honko; Lisa E. Hensley; Christian T. Happi; Robert F. Garry; Christine M. Malboeuf; Bruce W. Birren; Andreas Gnirke; Joshua Z. Levin; Pardis C. Sabeti

We have developed a robust RNA sequencing method for generating complete de novo assemblies with intra-host variant calls of Lassa and Ebola virus genomes in clinical and biological samples. Our method uses targeted RNase H-based digestion to remove contaminating poly(rA) carrier and ribosomal RNA. This depletion step improves both the quality of data and quantity of informative reads in unbiased total RNA sequencing libraries. We have also developed a hybrid-selection protocol to further enrich the viral content of sequencing libraries. These protocols have enabled rapid deep sequencing of both Lassa and Ebola virus and are broadly applicable to other viral genomics studies.


PLOS Neglected Tropical Diseases | 2015

Discovery of Novel Rhabdoviruses in the Blood of Healthy Individuals from West Africa

Matthew Stremlau; Kristian G. Andersen; Onikepe A. Folarin; Jessica N Grove; Ikponmwonsa Odia; Philomena E. Ehiane; Omowunmi Omoniwa; Omigie Omoregie; Pan Pan Jiang; Nathan L. Yozwiak; Christian B. Matranga; Xiao Yang; Stephen K. Gire; Sarah M. Winnicki; Ridhi Tariyal; Stephen F. Schaffner; Peter O. Okokhere; Sylvanus Okogbenin; George O. Akpede; Danny A. Asogun; Dennis E. Agbonlahor; Peter J. Walker; Robert B. Tesh; Joshua Z. Levin; Robert F. Garry; Pardis C. Sabeti; Christian T. Happi

Next-generation sequencing (NGS) has the potential to transform the discovery of viruses causing unexplained acute febrile illness (UAFI) because it does not depend on culturing the pathogen or a priori knowledge of the pathogen’s nucleic acid sequence. More generally, it has the potential to elucidate the complete human virome, including viruses that cause no overt symptoms of disease, but may have unrecognized immunological or developmental consequences. We have used NGS to identify RNA viruses in the blood of 195 patients with UAFI and compared them with those found in 328 apparently healthy (i.e., no overt signs of illness) control individuals, all from communities in southeastern Nigeria. Among UAFI patients, we identified the presence of nucleic acids from several well-characterized pathogenic viruses, such as HIV-1, hepatitis, and Lassa virus. In our cohort of healthy individuals, however, we detected the nucleic acids of two novel rhabdoviruses. These viruses, which we call Ekpoma virus-1 (EKV-1) and Ekpoma virus-2 (EKV-2), are highly divergent, with little identity to each other or other known viruses. The most closely related rhabdoviruses are members of the genus Tibrovirus and Bas-Congo virus (BASV), which was recently identified in an individual with symptoms resembling hemorrhagic fever. Furthermore, by conducting a serosurvey of our study cohort, we find evidence for remarkably high exposure rates to the identified rhabdoviruses. The recent discoveries of novel rhabdoviruses by multiple research groups suggest that human infection with rhabdoviruses might be common. While the prevalence and clinical significance of these viruses are currently unknown, these viruses could have previously unrecognized impacts on human health; further research to understand the immunological and developmental impact of these viruses should be explored. More generally, the identification of similar novel viruses in individuals with and without overt symptoms of disease highlights the need for a broader understanding of the human virome as efforts for viral detection and discovery advance.

Collaboration


Dive into the Sarah M. Winnicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge