Kristian Unger
Hammersmith Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristian Unger.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Julia Weber; Rupert Öllinger; Mathias Friedrich; Ursula Ehmer; Maxim Barenboim; Katja Steiger; Irina Heid; Sebastian Mueller; Roman Maresch; Thomas Engleitner; Nina Gross; Ulf Geumann; Beiyuan Fu; Angela Segler; Detian Yuan; Sebastian Lange; Alexander Strong; Jorge de la Rosa; Irene Esposito; Pentao Liu; Juan Cadiñanos; George S. Vassiliou; Roland M. Schmid; Günter Schneider; Kristian Unger; Fengtang Yang; Rickmer Braren; Mathias Heikenwalder; Ignacio Varela; Dieter Saur
Significance Assigning biological relevance and molecular function to large catalogues of mutated genes in cancer is a major challenge. Likewise, pinpointing drivers among thousands of transcriptionally or epigenetically dysregulated genes within a cancer is complex and limited by the lack of tools for high-throughput functional cancer genomic analyses. We show here for the first time, to our knowledge, application of the CRISPR/Cas9 genome engineering system for simultaneous (multiplexed) mutagenesis of large gene sets in adult mice, allowing high-throughput discovery and validation of cancer genes. We characterized applications of CRISPR/Cas9 multiplexing, resulting tumor phenotypes, and limitations of the methodology. By using defined genetic or environmental predisposing conditions, we also developed, to our knowledge, the first mouse models of CRISPR/Cas9-induced hepatocellular carcinoma and show how multiplexed CRISPR/Cas9 can facilitate functional genomic analyses of hepatobiliary cancers. Here, we show CRISPR/Cas9-based targeted somatic multiplex-mutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.
Nature Immunology | 2015
Shlomi Finkin; Detian Yuan; Ilan Stein; Koji Taniguchi; Achim Weber; Kristian Unger; Jeffrey L. Browning; Nicolas Goossens; Shigeki Nakagawa; Ganesh Gunasekaran; Myron Schwartz; Masahiro Kobayashi; Michael Berger; Orit Pappo; Klaus Rajewsky; Yujin Hoshida; Michael Karin; Mathias Heikenwalder; Yinon Ben-Neriah; Eli Pikarsky
Ectopic lymphoid-like structures (ELSs) are often observed in cancer, yet their function is obscure. Although ELSs signify good prognosis in certain malignancies, we found that hepatic ELSs indicated poor prognosis for hepatocellular carcinoma (HCC). We studied an HCC mouse model that displayed abundant ELSs and found that they constituted immunopathological microniches wherein malignant hepatocyte progenitor cells appeared and thrived in a complex cellular and cytokine milieu until gaining self-sufficiency. The egress of progenitor cells and tumor formation were associated with the autocrine production of cytokines previously provided by the niche. ELSs developed via cooperation between the innate immune system and adaptive immune system, an event facilitated by activation of the transcription factor NF-κB and abolished by depletion of T cells. Such aberrant immunological foci might represent new targets for cancer therapy.
Journal of Clinical Investigation | 2015
Xueru Mu; Regina Español-Suñer; Ingmar Mederacke; Silvia Affò; Rita Manco; Christine Sempoux; Frédéric P. Lemaigre; Arlind Adili; Detian Yuan; Achim Weber; Kristian Unger; Mathias Heikenwalder; Isabelle A. Leclercq; Robert F. Schwabe
In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance. Previous studies suggest that both hepatocytes and facultative progenitor cells within the biliary compartment are capable of generating HCC. As HCCs with a progenitor signature carry a worse prognosis, understanding the origin of HCC is of clinical relevance. Here, we used complementary fate-tracing approaches to label the progenitor/biliary compartment and hepatocytes in murine hepatocarcinogenesis. In genotoxic and genetic models, HCCs arose exclusively from hepatocytes but never from the progenitor/biliary compartment. Cytokeratin 19-, A6- and α-fetoprotein-positive cells within tumors were hepatocyte derived. In summary, hepatocytes represent the cell of origin for HCC in mice, and a progenitor signature does not reflect progenitor origin, but dedifferentiation of hepatocyte-derived tumor cells.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Julia Heß; G. A. Thomas; Herbert Braselmann; Verena Bauer; Tatjana Bogdanova; Johannes Wienberg; Horst Zitzelsberger; Kristian Unger
The main consequence of the Chernobyl accident has been an increase in papillary thyroid carcinomas (PTCs) in those exposed to radioactive fallout as young children. Our aim was to identify genomic alterations that are associated with exposure to radiation. We used array comparative genomic hybridization to analyze a main (n = 52) and a validation cohort (n = 28) of PTC from patients aged <25 y at operation and matched for age at diagnosis and residency. Both cohorts consisted of patients exposed and not exposed to radioiodine fallout. The study showed association of a gain on chromosome 7 (7q11.22–11.23) with exposure (false discovery rate = 0.035). Thirty-nine percent of the exposed group showed the alteration; however, it was not found in a single case from the unexposed group. This was confirmed in the validation set. Because only a subgroup of cases in the exposed groups showed gain of 7q11.22–11.23, it is likely that different molecular subgroups and routes of radiation-induced carcinogenesis exist. The candidate gene CLIP2 was specifically overexpressed in the exposed cases. In addition, the expression of the genes PMS2L11, PMS2L3, and STAG3L3 correlated with gain of 7q11.22–11.23. An enrichment of Gene Ontology terms “DNA repair” (PMS2L3, PMS2L5), “response to DNA damage stimulus” (BAZ1B, PMS2L3, PMS2L5, RFC2), and “cell–cell adhesion” (CLDN3, CLDN4) was found. This study, using matched exposed and unexposed cohorts, provides insights into the radiation-related carcinogenesis of young-onset PTC and, with the exposure-specific gain of 7q11 and overexpression of the CLIP2 gene, radiation-specific molecular markers.
Radiation Oncology | 2013
Isolde Summerer; Maximilian Niyazi; Kristian Unger; Adriana Pitea; Verena Zangen; Julia Hess; Michael J. Atkinson; Claus Belka; Simone Moertl; Horst Zitzelsberger
IntroductionCirculating microRNAs (miRNAs) are easily accessible and have already proven to be useful as prognostic markers in cancer patients. However, their origin and function in the circulation is still under discussion. In the present study we analyzed changes in the miRNAs in blood plasma of head and neck squamous cell carcinoma (HNSCC) patients in response to radiochemotherapy and compared them to the changes in a cell culture model of primary HNSCC cells undergoing simulated anti-cancer therapy.Materials and methodsMiRNA-profiles were analyzed by qRT-PCR arrays in paired blood plasma samples of HNSCC patients before therapy and after two days of treatment. Candidate miRNAs were validated by single qRT-PCR assays. An in vitro radiochemotherapy model using primary HNSCC cell cultures was established to test the possible tumor origin of the circulating miRNAs. Microarray analysis was performed on primary HNSCC cell cultures followed by validation of deregulated miRNAs via qRT-PCR.ResultsUnsupervised clustering of the expression profiles using the six most regulated miRNAs (miR-425-5p, miR-21-5p, miR-106b-5p, miR-590-5p, miR-574-3p, miR-885-3p) significantly (p = 0.012) separated plasma samples collected prior to treatment from plasma samples collected after two days of radiochemotherapy. MiRNA profiling of primary HNSCC cell cultures treated in vitro with radiochemotherapy revealed differentially expressed miRNAs that were also observed to be therapy-responsive in blood plasma of the patients (miR-425-5p, miR-21-5p, miR-106b-5p, miR-93-5p) and are therefore likely to stem from the tumor. Of these candidate marker miRNAs we were able to validate by qRT-PCR a deregulation of eight plasma miRNAs as well as miR-425-5p and miR-93-5p in primary HNSCC cultures after radiochemotherapy.ConclusionChanges in the abundance of circulating miRNAs during radiochemotherapy reflect the therapy response of primary HNSCC cells after an in vitro treatment. Therefore, the responsive miRNAs (miR-425-5p, miR-93-5p) may represent novel biomarkers for therapy monitoring. The prognostic value of this exciting observation requires confirmation using an independent patient cohort that includes clinical follow-up data.
Nature Communications | 2016
Roman Maresch; Sebastian Mueller; Christian Veltkamp; Rupert Öllinger; Mathias Friedrich; Irina Heid; Katja Steiger; Julia Weber; Thomas Engleitner; Maxim Barenboim; Sabine Klein; Sandra Louzada; Ruby Banerjee; Alexander Strong; Teresa Stauber; Nina Gross; Ulf Geumann; Sebastian Lange; Marc Ringelhan; Ignacio Varela; Kristian Unger; Fengtang Yang; Roland M. Schmid; George S. Vassiliou; Rickmer Braren; Günter Schneider; Mathias Heikenwalder; Allan Bradley; Dieter Saur; Roland Rad
Mouse transgenesis has provided fundamental insights into pancreatic cancer, but is limited by the long duration of allele/model generation. Here we show transfection-based multiplexed delivery of CRISPR/Cas9 to the pancreas of adult mice, allowing simultaneous editing of multiple gene sets in individual cells. We use the method to induce pancreatic cancer and exploit CRISPR/Cas9 mutational signatures for phylogenetic tracking of metastatic disease. Our results demonstrate that CRISPR/Cas9-multiplexing enables key applications, such as combinatorial gene-network analysis, in vivo synthetic lethality screening and chromosome engineering. Negative-selection screening in the pancreas using multiplexed-CRISPR/Cas9 confirms the vulnerability of pancreatic cells to Brca2-inactivation in a Kras-mutant context. We also demonstrate modelling of chromosomal deletions and targeted somatic engineering of inter-chromosomal translocations, offering multifaceted opportunities to study complex structural variation, a hallmark of pancreatic cancer. The low-frequency mosaic pattern of transfection-based CRISPR/Cas9 delivery faithfully recapitulates the stochastic nature of human tumorigenesis, supporting wide applicability for biological/preclinical research.
Cancer Genetics and Cytogenetics | 2012
Daniel Baumhoer; Stephanie Zillmer; Kristian Unger; Michael Rosemann; Michael J. Atkinson; Martin Irmler; Johannes Beckers; Heide Siggelkow; Irene von Luettichau; Gernot Jundt; Jan Smida; Michaela Nathrath
Osteosarcomas are genetically complex tumors with abundant structural and numerical alterations. The molecular pathogenesis of the disease is, however, still poorly understood. Aside from various oncogenes and tumor suppressor genes, deregulated microRNAs (miRNAs) are known to influence tumor development and biology. We therefore investigated six well-established osteosarcoma cell lines (HOS58, U2-OS, Saos-2, MNNG/HOS, SJSA-1, and MG-63) for genome-wide miRNA expression (miRBase Version 15.0, http://www.mirbase.org/) and correlated our findings with gene expression. Cultured osteoblasts (hFOB 1.19) and mesenchymal stem cells (L87/4) were used as normal references. Focusing only on miRNAs that were deregulated in the majority of osteosarcoma cell lines, we identified several miRNAs with oncogenic and tumor suppressor properties, including various members of the oncogenic miR-17-92 cluster. In addition, several genes involved in differentiation (RGMB, LRRC17), cell cycle control (CCNE1), and apoptosis (LIMA1, CAMK2N1) were found to be deregulated in osteosarcoma cell lines, most likely due to altered miRNA expression patterns. Our findings indicate a crucial impact of deregulated miRNAs with consecutive changes in gene expression in osteosarcomas, which strongly suggests pathogenetic and potentially therapeutic implications.
Journal of Molecular Medicine | 2008
Verena Bauer; Herbert Braselmann; Michael Henke; Dominik Mattern; Axel Walch; Kristian Unger; Michael Baudis; Silke Lassmann; Reinhard Huber; Johannes Wienberg; Martin Werner; Horst Zitzelsberger
It is well established that genetic alterations may be associated to prognosis in tumor patients. This study investigates chromosomal changes that predict the clinical outcome of head and neck squamous cell carcinoma (HNSCC) and correlate to characteristic clinicopathological parameters. We applied comparative genomic hybridization (CGH) to tissue samples from 117 HNSCC patients scheduled for radiotherapy. Genomic aberrations occurring in more than five patients were studied for impact on locoregional progression (LRP)-free survival. p values were adjusted by the Hochberg–Benjamini procedure and significant aberrations and clinical variables subjected to a stepwise backwards Cox proportional model. Significant alterations were further analyzed by array-CGH and fluorescence in situ hybridization (FISH). In multivariate survival analysis gains on 1q and 16q predict reduced LRP-free survival independently from known prognostic factors. Cluster analysis separated the HNSCC cases into two groups (cluster 1 and 2) that are characterized by significant differences for imbalances in 13 chromosomal regions. Moreover, it became apparent that cluster 1 correlates to nonanemic patients, while cluster 2 represents predominantly anemic cases. Array-CGH pinpoints 16q24.3 to be the region of interest on chromosome 16 which was further verified by FISH analysis where an increased copy number of FANCA, a member of the Fanconi anemia/breast cancer pathway, could be identified. This study demonstrates that chromosomal gains on 1q and 16q as well as chromosomal loss on 18q represent prognostic markers in HNSCC and that these alterations may explain to some extent the dismal course of a subgroup of patients.
Endocrine-related Cancer | 2010
Kristian Unger; Johannes Wienberg; Andrew Riches; Ludwig Hieber; Axel Walch; Andreas Brown; Patricia C. M. O'Brien; Cäcilia Briscoe; Lindsey Gray; Elke Rodriguez; Gerhard Jackl; Jeroen Knijnenburg; Giovanni Tallini; Malcolm A. Ferguson-Smith; Horst Zitzelsberger
Chromosomal copy number alterations and chromosomal rearrangements are frequent mutations in human cancer. Unlike copy number alterations, little is known about the role and occurrence of chromosomal rearrangements in breast cancer. This may be due to the fact that chromosome-based breakpoint analysis is widely restricted to cultured cells. In order to identify gene rearrangements in breast cancer, we studied the chromosomal breakpoints in radiation-transformed epithelial breast cell lines using a high-resolution array-based approach using 1 Mb bacterial artificial chromosome (BAC) arrays. The breakpoints were further narrowed down by fluorescence in situ hybridisation (FISH) with clones from the 32 k BAC library. The analysis of the cell lines B42-11 and B42-16 revealed rearrangements of chromosomes 7, 8, 10 and 12. We identified the genes Has2, Grid1, Ret, Cpm, Tbx3, Tbx5, Tuba1a, Wnt1 and Arf3 within the breakpoint regions. Quantitative RT-PCR showed a deregulated expression of all of these candidate genes except for Tbx5 and Tbx3. This is the first study demonstrating gene rearrangements and their deregulated mRNA expression in radiation-transformed breast cells. Since the gene rearrangements occurred in the transformed and tumourigenic cell lines only, it is likely that these were generated in conjunction with malignant transformation of the epithelial breast cells and therefore might reflect early molecular events in breast carcinogenesis. Initial studies indicate that these gene alterations are also found in sporadic breast cancers.
Radiation Oncology | 2015
Herbert Braselmann; Agata Michna; Julia Heß; Kristian Unger
BackgroundColony formation assay is the gold standard to determine cell reproductive death after treatment with ionizing radiation, applied for different cell lines or in combination with other treatment modalities. Associated linear-quadratic cell survival curves can be calculated with different methods. For easy code exchange and methodological standardisation among collaborating laboratories a software package CFAssay for R (R Core Team, R: A Language and Environment for Statistical Computing, 2014) was established to perform thorough statistical analysis of linear-quadratic cell survival curves after treatment with ionizing radiation and of two-way designs of experiments with chemical treatments only.MethodsCFAssay offers maximum likelihood and related methods by default and the least squares or weighted least squares method can be optionally chosen. A test for comparision of cell survival curves and an ANOVA test for experimental two-way designs are provided.ResultsFor the two presented examples estimated parameters do not differ much between maximum-likelihood and least squares. However the dispersion parameter of the quasi-likelihood method is much more sensitive for statistical variation in the data than the multiple R2 coefficient of determination from the least squares method.ConclusionThe dispersion parameter for goodness of fit and different plot functions in CFAssay help to evaluate experimental data quality. As open source software interlaboratory code sharing between users is facilitated.AvailabilityThe package is available at http://www.bioconductor.org/packages/release/bioc/html/CFAssay.html.