Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristien Peeters is active.

Publication


Featured researches published by Kristien Peeters.


Neurology | 2010

Genetic contribution of FUS to frontotemporal lobar degeneration

T Van Langenhove; J. van der Zee; K Sleegers; S. Engelborghs; Rik Vandenberghe; Ilse Gijselinck; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; P.P. De Deyn; Marc Cruts; C. Van Broeckhoven

Background: Recently, the FUS gene was identified as a new causal gene for amyotrophic lateral sclerosis (ALS) in ∼4% of patients with familial ALS. Since ALS and frontotemporal lobar degeneration (FTLD) are part of a clinical, pathologic, and genetic disease spectrum, we investigated a potential role of FUS in FTLD. Methods: We performed mutational analysis of FUS in 122 patients with FTLD and 15 patients with FTLD-ALS, as well as in 47 patients with ALS. Mutation screening was performed by sequencing of PCR amplicons of the 15 FUS exons. Results: We identified 1 patient with FTLD with a novel missense mutation, M254V, that was absent in 638 control individuals. In silico analysis predicted this amino acid substitution to be pathogenic. The patient did not have a proven family history of neurodegenerative brain disease. Further, we observed the known R521H mutation in 1 patient with ALS. No FUS mutations were detected in the patients with FTLD-ALS. While insertions/deletions of 2 glycines (G) were suggested to be pathogenic in the initial FUS reports, we observed an identical GG-deletion in 2 healthy individuals and similar G-insertions/deletions in 4 other control individuals, suggesting that G-insertions/deletions within this G-rich region may be tolerated. Conclusions: In a first analysis of FUS in patients with frontotemporal lobar degeneration (FTLD), we identified a novel FUS missense mutation, M254V, in 1 patient with pure FTLD. At this point, the biologic relevance of this mutation remains elusive. Screening of additional FTLD patient cohorts will be needed to further elucidate the contribution of FUS mutations to FTLD pathogenesis.


Neurology | 2008

Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease

Nicolas Brouwers; K Sleegers; S. Engelborghs; Sebastian Maurer-Stroh; Ilse Gijselinck; J. van der Zee; Barbara A. Pickut; M Van den Broeck; Maria Mattheijssens; Kristien Peeters; Joost Schymkowitz; Frederic Rousseau; J. J. Martin; Marc Cruts; P.P. De Deyn; C. Van Broeckhoven

Objective: Loss-of-function mutations in the progranulin gene (PGRN) were identified in frontotemporal lobar degeneration (FTLD) with ubiquitin-immunoreactive neuronal inclusions (FTLD-U). We assessed whether PGRN also contributes to genetic risk for Alzheimer disease (AD) in an extended Belgian AD patient group (n = 779, onset age 74.7 ± 8.7 years). Methods: A mutation analysis of the PGRN coding region was performed. The effect of missense mutations was assessed using in silico predictions and protein modeling. Risk effects of common genetic variants were estimated by logistic regression analysis and gene-based haplotype association analysis. Results: We observed seven missense mutations in eight patients (1.3%). Convincing pathogenic evidence was obtained for two missense mutations, p.Cys139Arg and p.Pro451Leu, affecting PGRN protein folding and leading to loss of PGRN by degradation of the misfolded protein. In addition, we showed that PGRN haplotypes were associated with increased risk for AD. Conclusions: Our data support a role for PGRN in patients with clinically diagnosed Alzheimer disease (AD). Further, we hypothesize that at least some PGRN missense mutations might lead to loss of functional protein. Whether the underlying pathology in our cases proves to be AD, frontotemporal lobar degeneration, or a combination of the two must await further investigations.


Molecular Psychiatry | 2012

Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites

Nathalie Brouwers; C Van Cauwenberghe; S. Engelborghs; J-C Lambert; Karolien Bettens; N Le Bastard; Florence Pasquier; A Gil Montoya; Kristien Peeters; Maria Mattheijssens; Rik Vandenberghe; P.P. De Deyn; Marc Cruts; Philippe Amouyel; Kristel Sleegers; C. Van Broeckhoven

Two multicentre genome-wide association (GWA) studies provided substantial evidence, implicating the complement receptor 1 gene (CR1) in Alzheimer disease (AD) genetic etiology. CR1 encodes a large transmembrane receptor with a crucial role in the immune complement cascade. We performed a genetic follow-up of the GWA CR1 association in a Flanders–Belgian cohort (n=1883), and investigated the effect of single-nucleotide polymorphisms (SNPs) located in the CR1 locus on AD risk and cerebrospinal fluid (CSF) biomarker levels. We obtained significant association (Padj<0.03; odds ratio (OR)=1.24 (95% confidence interval (CI): 1.02–1.51)) for one CR1 risk haplotype, and haplotype association was strongest in individuals carrying apolipoprotein E (APOE) ɛ4 alleles (Padj<0.006; OR=1.50 (95% CI: 1.08–2.09)). Also, four SNPs correlated with increased CSF amyloid Aβ1−42 levels, suggesting a role for the CR1 protein in Aβ metabolism. Moreover, we quantified a low-copy repeat (LCR)-associated copy number variation (CNV) in CR1, producing different CR1 isoforms, CR1-F and CR1-S, and obtained significant association in carriers of CR1-S. We replicated the CR1 CNV association finding in a French cohort (n=2003) and calculated in the combined cohorts, an OR of 1.32; 95% CI: 1.10–1.59 (P=0.0025). Our data showed that the common AD risk association may well be explained by the presence of CR1-S increasing the number of C3b/C4b and cofactor activity sites and AD risk with 30% in CR1-S carriers. How precisely the different functional role of CR1-S in the immune complement cascade contributes to AD pathogenesis will need additional functional studies.


Neurology | 2007

Familial occipitotemporal lobe epilepsy and migraine with visual aura Linkage to chromosome 9q

Liesbet Deprez; Kristien Peeters; W. Van Paesschen; Kristl G. Claeys; Lieve Claes; Arvid Suls; D Audenaert; T Van Dyck; Dirk Goossens; Jurgen Del-Favero; P. De Jonghe

Objective: To map the disease-causing locus in a large Belgian family with occipitotemporal lobe epilepsy associated with migraine with visual aura and to describe the clinical, electrophysiologic, and imaging characteristics. Methods: DNA samples from 21 family members were obtained and an 8 cM density genome-wide scan was performed. The authors interviewed 21 individuals and performed interictal EEG in 14 and brain MRI in 13 individuals. Results: Nine at risk family members and one deceased individual had epilepsy with occipital and temporal lobe symptomatology, variable age at onset, usually good prognosis, no epileptic EEG features, and normal brain MRI. Five of the 10 patients had a history of migraine with aura (p = 0.0026). Seizures and migraine attacks occurred as separate episodes in all but one patient. Three patients described light flashes both as epileptic and migraine aura. Epilepsy and migraine started at the same age in three patients and remitted simultaneously in two. The epileptic phenotype had a dominant mode of inheritance with a reduced penetrance of 75%. A conclusive two-point lod score of 3.3 was obtained for marker D9S257 at recombination fraction zero. Haplotype analysis defined a candidate region of 9.95 cM (5.96 Mb) between markers GATA152H04 and D9S253 located at chromosome 9q21-q22 based upon recombinations in affected individuals. Conclusions: The clinical association in this family of occipitotemporal lobe epilepsy and migraine with visual aura and the conclusive linkage of the occipitotemporal lobe epilepsy/migraine with aura trait to a single locus suggests a common monogenic gene defect.


Brain | 2011

Genetic spectrum of hereditary neuropathies with onset in the first year of life

Jonathan Baets; Tine Deconinck; Els De Vriendt; Magdalena Zimoń; Laetitia Yperzeele; Kim Van Hoorenbeeck; Kristien Peeters; Ronen Spiegel; Yesim Parman; Berten Ceulemans; Patrick Van Bogaert; Adolf Pou-Serradell; Günther Bernert; Argirios Dinopoulos; Michaela Auer-Grumbach; Satu-Leena Sallinen; Gian Maria Fabrizi; Fernand Pauly; Peter Van den Bergh; Birdal Bilir; Esra Battaloglu; Ricardo E. Madrid; Dagmara Kabzińska; Andrzej Kochański; Haluk Topaloglu; Geoffrey P. Miller; Albena Jordanova; Vincent Timmerman

Early onset hereditary motor and sensory neuropathies are rare disorders encompassing congenital hypomyelinating neuropathy with disease onset in the direct post-natal period and Dejerine–Sottas neuropathy starting in infancy. The clinical spectrum, however, reaches beyond the boundaries of these two historically defined disease entities. De novo dominant mutations in PMP22, MPZ and EGR2 are known to be a typical cause of very early onset hereditary neuropathies. In addition, mutations in several other dominant and recessive genes for Charcot–Marie–Tooth disease may lead to similar phenotypes. To estimate mutation frequencies and to gain detailed insights into the genetic and phenotypic heterogeneity of early onset hereditary neuropathies, we selected a heterogeneous cohort of 77 unrelated patients who presented with symptoms of peripheral neuropathy within the first year of life. The majority of these patients were isolated in their family. We performed systematic mutation screening by means of direct sequencing of the coding regions of 11 genes: MFN2, PMP22, MPZ, EGR2, GDAP1, NEFL, FGD4, MTMR2, PRX, SBF2 and SH3TC2. In addition, screening for the Charcot–Marie–Tooth type 1A duplication on chromosome 17p11.2-12 was performed. In 35 patients (45%), mutations were identified. Mutations in MPZ, PMP22 and EGR2 were found most frequently in patients presenting with early hypotonia and breathing difficulties. The recessive genes FGD4, PRX, MTMR2, SBF2, SH3TC2 and GDAP1 were mutated in patients presenting with early foot deformities and variable delay in motor milestones after an uneventful neonatal period. Several patients displaying congenital foot deformities but an otherwise normal early development carried the Charcot–Marie–Tooth type 1A duplication. This study clearly illustrates the genetic heterogeneity underlying hereditary neuropathies with infantile onset.


Neurology | 2009

Clinical heterogeneity in 3 unrelated families linked to VCP p.Arg159His

J. van der Zee; Daniel Pirici; T Van Langenhove; S. Engelborghs; Rik Vandenberghe; M Hoffmann; G Pusswald; M Van den Broeck; Kristien Peeters; Maria Mattheijssens; J. J. Martin; P.P. De Deyn; Marc Cruts; D Haubenberger; Samir Kumar-Singh; A Zimprich; C. Van Broeckhoven

Background: Families associated with missense mutations in the valosin-containing protein (VCP) present with a rare autosomal dominant multisystem disorder of frontotemporal lobar degeneration (FTLD), inclusion body myopathy (IBM), and Paget disease of bone (PDB), referred to as IBMPFD. Methods: We used exon-based genomic DNA sequencing to test for VCP mutations in 123 unrelated Belgian patients with FTLD and their relatives, and the absence of such mutations in 157 control individuals. We analyzed haplotype sharing among mutation carriers by genotyping 8 microsatellite markers in the VCP locus. We obtained family history and clinical and pathologic data using established diagnostic instruments. Results: Mutation analysis of VCP identified 2 Belgian patients with FTLD carrying the p.Arg159His mutation, which segregated in their families. In one family, patients presented with FTLD only, whereas in the other family, patients developed FTLD, PDB, or both without signs of IBM for any of the mutation carriers. We had previously identified p.Arg159His in an Austrian family with patients exhibiting both IBM and PDB. Haplotype sharing analysis indicated that the 3 p.Arg159His families are unrelated. Clinical follow-up of the Austrian family identified dementia symptoms in 1 patient. Autopsy data of 3 patients of the 2 Belgian families revealed FTLD pathology with numerous ubiquitin-immunoreactive, intranuclear inclusions and dystrophic neurites staining positive for TDP-43 protein. Conclusions: In 3 unrelated families with IBMPFD segregating VCP p.Arg159His, we observed a high degree of clinical heterogeneity and variable penetrance of the 3 cardinal clinical phenotypes: inclusion body myopathy, Paget disease of bone, and frontotemporal lobar degeneration. In contrast, the neuropathologic phenotype was consistent with FTLD-TDP type 4.


Nature Genetics | 2012

Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia.

Magdalena Zimoń; Jonathan Baets; Leonardo Almeida-Souza; Els De Vriendt; J. Nikodinovic; Yesim Parman; Esra Battalolu; Zeliha Matur; Velina Guergueltcheva; Ivailo Tournev; Michaela Auer-Grumbach; Peter De Rijk; Britt-Sabina Petersen; Thomas Müller; Erik Fransen; Philip Van Damme; Wolfgang N. Löscher; Nina Barišić; Zoran Mitrović; Stefano C. Previtali; Haluk Topalolu; Günther Bernert; Ana Beleza-Meireles; S. Todorovic; Dušanka Savić-Pavićević; Boryana Ishpekova; Silvia Lechner; Kristien Peeters; Tinne Ooms; Angelika F Hahn

Inherited peripheral neuropathies are frequent neuromuscular disorders known for their clinical and genetic heterogeneity. In 33 families, we identified 8 mutations in HINT1 (encoding histidine triad nucleotide–binding protein 1) by combining linkage analyses with next-generation sequencing and subsequent cohort screening of affected individuals. Our study provides evidence that loss of functional HINT1 protein results in a distinct phenotype of autosomal recessive axonal neuropathy with neuromyotonia.


Neurology | 2011

Distal myopathy with upper limb predominance caused by filamin C haploinsufficiency.

Velina Guergueltcheva; Kristien Peeters; Jonathan Baets; Chantal Ceuterick-de Groote; J. J. Martin; Arvid Suls; E. De Vriendt; Violeta Mihaylova; Teodora Chamova; Leonardo Almeida-Souza; Elke Ydens; C. Tzekov; G. Hadjidekov; M. Gospodinova; K. Storm; E. Reyniers; Stoyan Bichev; P.F.M. van der Ven; Dieter O. Fürst; Vanyo Mitev; Hanns Lochmüller; Vincent Timmerman; I. Tournev; P. De Jonghe; Albena Jordanova

Objective: In this study, we investigated the detailed clinical findings and underlying genetic defect in 3 presumably related Bulgarian families displaying dominantly transmitted adult onset distal myopathy with upper limb predominance. Methods: We performed neurologic, electrophysiologic, radiologic, and histopathologic analyses of 13 patients and 13 at-risk but asymptomatic individuals from 3 generations. Genome-wide parametric linkage analysis was followed by bidirectional sequencing of the filamin C (FLNC) gene. We characterized the identified nonsense mutation at cDNA and protein level. Results: Based on clinical findings, no known myopathy subtype was implicated in our distal myopathy patients. Light microscopic analysis of affected muscle tissue showed no specific hallmarks; however, the electron microscopy revealed changes compatible with myofibrillar myopathy. Linkage studies delineated a 9.76 Mb region on chromosome 7q22.1-q35 containing filamin C (FLNC), a gene previously associated with myofibrillar myopathy. Mutation analysis revealed a novel c.5160delC frameshift deletion in all patients of the 3 families. The mutation results in a premature stop codon (p.Phe1720LeufsX63) that triggers nonsense-mediated mRNA decay. FLNC transcript levels were reduced in muscle and lymphoblast cells from affected subjects and partial loss of FLNC in muscle tissue was confirmed by protein analysis. Conclusions: The FLNC mutation that we identified is distinct in terms of the associated phenotype, muscle morphology, and underlying molecular mechanism, thus extending the currently recognized clinical and genetic spectrum of filaminopathies. We conclude that filamin C is a dosage-sensitive gene and that FLNC haploinsufficiency can cause a specific type of myopathy in humans.


Neurology | 2008

Progranulin variability has no major role in Parkinson disease genetic etiology

Karen Nuytemans; Philippe Pals; K Sleegers; S. Engelborghs; Ellen Corsmit; Kristien Peeters; Barbara A. Pickut; Maria Mattheijssens; Patrick Cras; P.P. De Deyn; Jessie Theuns; C. Van Broeckhoven

Background: Different loss-of-function mutations were identified underlying PGRN haploinsufficiency in patients with frontotemporal lobar degeneration. PGRN mutations were also identified in other neurodegenerative brain diseases such as amyotrophic lateral sclerosis and Alzheimer disease, though their biologic contribution to these diseases remains elusive. Because of its apparent role in neuronal survival, we argued that PGRN might also contribute to Parkinson disease (PD) pathogenesis. Methods: We screened PGRN exons for mutations in 255 patients with PD and 459 control individuals by direct genomic sequencing. Genetic association of PGRN with risk for PD was assessed using single nucleotide polymorphisms (SNPs) across the gene. Results: In patients we identified four missense mutations of which p.Asp33Glu and p.Arg514Met were absent in control individuals. Single SNP and haplotype analyses did not detect significant associations with PD. Conclusions: Our results do not support a major role for PGRN in the genetic etiology of Parkinson disease (PD). At this stage and in the absence of functional data, it remains unclear whether p.Asp33Glu and p.Arg514Met are biologically relevant to PD pathogenesis in the mutation carriers.


Human Mutation | 2015

Novel Mutations in the DYNC1H1 Tail Domain Refine the Genetic and Clinical Spectrum of Dyneinopathies

Kristien Peeters; Sven Bervoets; Teodora Chamova; Ivan Litvinenko; Els De Vriendt; Stoyan Bichev; Dahlia Kancheva; Vanyo Mitev; Marina Kennerson; Vincent Timmerman; Ivailo Tournev; John MacMillan; Albena Jordanova

The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole‐exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.

Collaboration


Dive into the Kristien Peeters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge