Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristiina Iisa is active.

Publication


Featured researches published by Kristiina Iisa.


Green Chemistry | 2014

Real-time monitoring of the deactivation of HZSM-5 during upgrading of pine pyrolysis vapors.

Calvin Mukarakate; Xiaodong Zhang; Alexander R. Stanton; David J. Robichaud; Peter N. Ciesielski; Kara Malhotra; Bryon S. Donohoe; Erica Gjersing; Robert J. Evans; David S. Heroux; Ryan M. Richards; Kristiina Iisa; Mark R. Nimlos

The conversion of pine pyrolysis vapors over fixed beds of HZSM-5 catalyst was studied as a function of deactivation of the catalyst, presumably by coking. Small laboratory reactors were used in this study in which the products were identified using a molecular beam mass spectrometer (MBMS) and gas chromatography mass spectrometry (GCMS). In all of these experiments, real-time measurements of the products formed were conducted as the catalyst aged and deactivated during upgrading. The results from these experiments showed the following: (1) Fresh catalyst produces primarily aromatic hydrocarbons and olefins with no detectable oxygen-containing species. (2) After pyrolysis of roughly the same weight of biomass as weight of catalyst, oxygenated products begin to appear in the product stream. This suite of oxygen containing products appears different from the products formed when the catalyst is fresh and when the catalyst is completely deactivated. In particular, phenol and cresols are measured while upgrading pine, cellulose and lignin pyrolysis vapors, suggesting that these products are intermediates or side products formed during upgrading. (3) After the addition of more pyrolysis vapors, the product stream consists of primary vapors from pine pyrolysis. Catalyst samples collected at various points during deactivation were analyzed using a variety of tools. The results show that carbon build-up is correlated with catalyst deactivation, suggesting that deactivation is due to coking. Further, studies of nitrogen adsorption on the used catalyst suggest that coking initially occurs on the outside of the catalyst, leaving the micropores largely intact. From a practical point of view, it appears that based upon this study and others in the literature, the amount of oxygen in the upgraded products can be related to the level of deactivation of the HZSM-5 catalyst, which can be determined by how much pyrolysis vapor is run over the catalyst.


Green Chemistry | 2014

Upgrading biomass pyrolysis vapors over β-zeolites: role of silica-to-alumina ratio

Calvin Mukarakate; Michael J. Watson; Jeroen ten Dam; Xavier Baucherel; Sridhar Budhi; Matthew M. Yung; Haoxi Ben; Kristiina Iisa; Robert M. Baldwin; Mark R. Nimlos

The conversion of biomass primary pyrolysis vapors over several β-zeolites with silica-to-alumina ratios (SAR) varying from 21 to 250 was carried out in a flow microreactor to investigate the effect of number of acid sites on product speciation and deactivation of the catalyst. Experiments were conducted using a horizontal fixed bed semi-batch reactor in which up to 40 discrete 50 mg boats of biomass were pyrolyzed and the vapors upgraded over 0.5 g of the catalyst. Products were measured with a molecular beam mass spectrometer (MBMS). These studies were complemented using a tandem micropyrolyzer connected to a GCMS (py-GCMS) for speciation and quantifying the products. In the py-GCMS experiments, several 0.5 mg loads of pine were pyrolyzed sequentially and the vapors upgraded over 4 mg of catalyst. In all of these experiments, real-time measurements of the products formed were conducted as the catalyst aged and deactivated during upgrading. The results from these experiments showed that: (1) fresh catalyst for β-zeolites with lower SAR (more acid sites) produced primarily aromatic hydrocarbons and olefins with no detectable oxygen-containing species; (2) a suite of oxygenated products was observed from fresh catalysts with high SAR (few acid sites), indicating that 0.5 g of these catalyst materials did not have sufficient acid sites to deoxygenate vapors produced from pyrolysis of 50 mg of pine. This suite of oxygen containing products consisted of furans, phenol and cresols. The amount of coke deposited on each catalyst and the yield of aromatic hydrocarbons increased with the number of acid sites. However, while the catalysts were active, the biomass selectivity towards coke and hydrocarbons remained essentially constant on the catalysts of varying SAR.


Green Chemistry | 2015

Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols

Calvin Mukarakate; Josefine McBrayer; Tabitha J. Evans; Sridhar Budhi; David J. Robichaud; Kristiina Iisa; Jeroen ten Dam; Michael J. Watson; Robert M. Baldwin; Mark R. Nimlos

During catalytic upgrading over HZSM-5 of vapors from fast pyrolysis of biomass (ex situ CFP), water reacts with aromatic intermediates to form phenols that are then desorbed from the catalyst micropores and produced as products. We observe this reaction using real time measurement of products from neat CFP and with added steam. The reaction is confirmed when 18O-labeled water is used as the steam source and the labeled oxygen is identified in the phenol products. Furthermore, phenols are observed when cellulose pyrolysis vapors are reacted over the HZSM-5 catalyst in steam. This suggests that the phenols do not only arise from phenolic products formed during the pyrolysis of the lignin component of biomass; phenols are also formed by reaction of water molecules with aromatic intermediates formed during the transformation of all of the pyrolysis products. Water formation during biomass pyrolysis is involved in this reaction and leads to the common observation of phenols in products from neat CFP. Steam also reduces the formation of non-reactive carbon in the zeolite catalysts and decreases the rate of deactivation and the amount of measured “coke” on the catalyst. These CFP results were obtained in a flow microreactor coupled to a molecular beam mass spectrometer (MBMS), which allowed for real-time measurement of products and facilitated determination of the impact of steam during catalytic upgrading, complemented by a tandem micropyrolyzer connected to a GCMS for identification of the products.


Green Chemistry | 2015

Molybdenum incorporated mesoporous silica catalyst for production of biofuels and value-added chemicals via catalytic fast pyrolysis.

Sridhar Budhi; Calvin Mukarakate; Kristiina Iisa; Svitlana Pylypenko; Peter N. Ciesielski; Matthew M. Yung; Bryon S. Donohoe; Rui Katahira; Mark R. Nimlos; Brian G. Trewyn

Production of value-added furans and phenols from biomass through catalytic fast pyrolysis of pine using molybdenum supported on KIT-5 mesoporous silica was explored. Catalysts containing different loadings of molybdenum were synthesized and characterized by X-ray diffraction, physisorption and chemisorption analysis, various electron microscopic techniques and X-ray photoelectron spectroscopy. Characterization studies indicate that molybdenum is homogeneously distributed over the KIT-5 silica support in a +6 oxidation state. Fast pyrolysis of pine using molecular beam mass spectrometry with fresh Mo catalyst preferentially produced furans and phenols over conventionally observed aromatic hydrocarbons. Detailed investigation of model biopolymers indicates that the furans originated from the carbohydrate portion of the biomass and the phenols emerged predominantly from the lignin portion of biomass. Results obtained from MBMS were complemented using pyrolytic-GCMS.


Biofuels | 2012

Chemical characterization and water content determination of bio-oils obtained from various biomass species using 31P NMR spectroscopy

Kasi David; Haoxi Ben; John D. Muzzy; Calvin Feik; Kristiina Iisa; Arthur J. Ragauskas

Background: Pyrolysis is a promising approach to utilize biomass for biofuels. One of the key challenges for this conversion is how to analyze complicated components in the pyrolysis oils. Water contents of pyrolysis oils are normally analyzed by Karl Fischer titration. The use of 2-chloro-4,4,5,5,-tetramethyl-1,3,2-dioxaphospholane followed by 31P NMR analysis has been used to quantitatively analyze the structure of hydroxyl groups in lignin and whole biomass. Results:31P NMR analysis of pyrolysis oils is a novel technique to simultaneously characterize components and analyze water contents in pyrolysis oils produced from various biomasses. The water contents of various pyrolysis oils range from 16 to 40 wt%. The pyrolysis oils obtained from Loblolly pine had higher guaiacyl content, while that from oak had a higher syringyl content. Conclusion: The comparison with Karl Fischer titration shows that 31P NMR could also reliably be used to measure the water content of pyrolysis oils. Simultaneously with analysis of water content, quantitative characterization of hydroxyl groups, including aliphatic, C-5 substituted/syringyl, guaiacyl, p-hydroxyl phenyl and carboxylic hydroxyl groups, could also be provided by 31P NMR analysis.


Green Chemistry | 2018

Improving biomass pyrolysis economics by integrating vapor and liquid phase upgrading

Kristiina Iisa; David J. Robichaud; Michael J. Watson; Jeroen ten Dam; Abhijit Dutta; Calvin Mukarakate; Seonah Kim; Mark R. Nimlos; Robert M. Baldwin

Partial deoxygenation of bio-oil by catalytic fast pyrolysis with subsequent coupling and hydrotreating can lead to improved economics and will aid commercial deployment of pyrolytic conversion of biomass technologies. Biomass pyrolysis efficiently depolymerizes and deconstructs solid plant matter into carbonaceous molecules that, upon catalytic upgrading, can be used for fuels and chemicals. Upgrading strategies include catalytic deoxygenation of the vapors before they are condensed (in situ and ex situ catalytic fast pyrolysis), or hydrotreating following condensation of the bio-oil. In general, deoxygenation carbon efficiencies, one of the most important cost drivers, are typically higher for hydrotreating when compared to catalytic fast pyrolysis alone. However, using catalytic fast pyrolysis as the primary conversion step can benefit the entire process chain by: (1) reducing the reactivity of the bio-oil, thereby mitigating issues with aging and transport and eliminating need for multi-stage hydroprocessing configurations; (2) producing a bio-oil that can be fractionated through distillation, which could lead to more efficient use of hydrogen during hydrotreating and facilitate integration in existing petroleum refineries; and (3) allowing for the separation of the aqueous phase. In this perspective, we investigate in detail a combination of these approaches, where some oxygen is removed during catalytic fast pyrolysis and the remainder removed by downstream hydrotreating, accompanied by carbon–carbon coupling reactions in either the vapor or liquid phase to maximize carbon efficiency toward value-driven products (e.g. fuels or chemicals). The economic impact of partial deoxygenation by catalytic fast pyrolysis will be explored in the context of an integrated two-stage process. Finally, improving the overall pyrolysis-based biorefinery economics by inclusion of production of high-value co-products will be examined.


Journal of Visualized Experiments | 2016

Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

Huamin Wang; Douglas C. Elliott; Richard J. French; Steve Deutch; Kristiina Iisa

Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.


Energy and Environmental Science | 2018

Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration

Michael B. Griffin; Kristiina Iisa; Huamin Wang; Abhijit Dutta; Kellene A. Orton; Richard J. French; Daniel M. Santosa; Nolan Wilson; Earl Christensen; Connor P. Nash; Kurt M. Van Allsburg; Frederick G. Baddour; Daniel A. Ruddy; Eric Tan; Hao Cai; Calvin Mukarakate

Catalytic fast pyrolysis (CFP) has emerged as an attractive process for the conversion of lignocellulosic biomass into renewable fuels and products. Considerable research and development has focused on using circulating-bed reactors with zeolite catalysts (e.g., HZSM-5) for CFP because of their propensity to form gasoline-range aromatic hydrocarbons. However, the high selectivity for aromatics comes at the expense of low carbon yield, a key economic driver for this process. In this contribution, we evaluate non-zeolite catalysts in a fixed-bed reactor configuration for an integrated CFP process to produce fuel blendstocks from lignocellulosic biomass. These experimental efforts are coupled with technoeconomic analysis (TEA) to benchmark the process and guide research and development activities to minimize costs. The results indicate that CFP bio-oil can be produced from pine with improved yield by using a bifunctional metal-acid 2 wt% Pt/TiO2 catalyst in a fixed-bed reactor operated with co-fed H2 at near atmospheric pressure, as compared to H-ZSM5 in a circulating-bed reactor. The Pt/TiO2 catalyst exhibited good stability over 13 reaction-regeneration cycles with no evidence of irreversible deactivation. The CFP bio-oil was continuously hydrotreated for 140 h time-on-stream using a single-stage system with 84 wt% of the hydrotreated product having a boiling point in the gasoline and distillate range. This integrated biomass-to-blendstock process was determined to exhibit an energy efficiency of 50% and a carbon efficiency of 38%, based on the experimental results and process modelling. TEA of the integrated process revealed a modelled minimum fuel selling price (MFSP) of


Energy & Fuels | 2011

Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

Earl Christensen; Gina M. Chupka; Jon Luecke; Tricia D. Smurthwaite; Teresa L. Alleman; Kristiina Iisa; James A. Franz; Douglas C. Elliott; Robert L. McCormick

4.34 per gasoline gallon equivalent (GGE), which represents a cost reduction of


Energy & Fuels | 2014

Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

Douglas C. Elliott; Huamin Wang; Richard J. French; Steve Deutch; Kristiina Iisa

0.85 GGE−1 compared to values reported for CFP with a zeolite catalyst. TEA also indicated that catalyst cost was a significant factor influencing the MFSP, which informed additional CFP experiments in which lower-cost Mo2C and high-dispersion 0.5 wt% Pt/TiO2 catalysts were synthesized and evaluated. These materials demonstrated CFP carbon yield and oil oxygen content similar to those of the 2 wt% Pt/TiO2 catalyst, offering proof-of-concept that the lower-cost catalysts can be effective for CFP and providing a route to reduce the modelled MFSP to

Collaboration


Dive into the Kristiina Iisa's collaboration.

Top Co-Authors

Avatar

Mark R. Nimlos

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Calvin Mukarakate

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard J. French

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew M. Yung

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sridhar Budhi

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

David J. Robichaud

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kellene A. Orton

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Abhijit Dutta

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bryon S. Donohoe

National Renewable Energy Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge