Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin A. Waite is active.

Publication


Featured researches published by Kristin A. Waite.


American Journal of Human Genetics | 2002

Protean PTEN: Form and Function

Kristin A. Waite; Charis Eng

Germline mutations distributed across the PTEN tumor-suppressor gene have been found to result in a wide spectrum of phenotypic features. Originally shown to be a major susceptibility gene for both Cowden syndrome (CS), which is characterized by multiple hamartomas and an increased risk of breast, thyroid, and endometrial cancers, and Bannayan-Riley-Ruvalcaba syndrome, which is characterized by lipomatosis, macrocephaly, and speckled penis, the PTEN hamartoma tumor syndrome spectrum has broadened to include Proteus syndrome and Proteus-like syndromes. Exon 5, which encodes the core motif, is a hotspot for mutations likely due to the biology of the protein. PTEN is a major lipid 3-phosphatase, which signals down the PI3 kinase/AKT pro-apoptotic pathway. Furthermore, PTEN is a protein phosphatase, with the ability to dephosphorylate both serine and threonine residues. The protein-phosphatase activity has also been shown to regulate various cell-survival pathways, such as the mitogen-activated kinase (MAPK) pathway. Although it is well established that PTENs lipid-phosphatase activity, via the PI3K/AKT pathway, mediates growth suppression, there is accumulating evidence that the protein-phosphatase/MAPK pathway is equally important in the mediation of growth arrest and other crucial cellular functions.


Nature Reviews Genetics | 2003

From developmental disorder to heritable cancer: it's all in the BMP/TGF-β family

Kristin A. Waite; Charis Eng

Transforming growth factor-β (TGF-β) regulates many cellular processes through complex signal-transduction pathways that have crucial roles in normal development. Disruption of these pathways can lead to a range of diseases, including cancer. Mutations in the genes that encode members of the TGF-β pathway are involved in vascular diseases as well as gastrointestinal neoplasia. More recently, they have been implicated in Cowden syndrome, which is normally associated with mutations in the phosphatase and tensin homologue gene PTEN. Molecular studies of TGF-β signalling are now showing why mutations in genes that encode components of this pathway result in inherited cancer and developmental diseases.


American Journal of Human Genetics | 2003

Germline PTEN Promoter Mutations and Deletions in Cowden/Bannayan-Riley-Ruvalcaba Syndrome Result in Aberrant PTEN Protein and Dysregulation of the Phosphoinositol-3-Kinase/Akt Pathway

Xiao Ping Zhou; Kristin A. Waite; Robert Pilarski; Heather Hampel; Magali Fernandez; Cindy Bos; Majed Dasouki; Gerald L. Feldman; Lois A. Greenberg; Jennifer Ivanovich; Ellen T. Matloff; Annette R. Patterson; Mary Ella Pierpont; Donna Russo; Najah T. Nassif; Charis Eng

Germline intragenic mutations in PTEN are associated with 80% of patients with Cowden syndrome (CS) and 60% of patients with Bannayan-Riley-Ruvalcaba syndrome (BRRS). The underlying genetic causes remain to be determined in a considerable proportion of classic CS and BRRS without a polymerase chain reaction (PCR)-detectable PTEN mutation. We hypothesized that gross gene deletions and mutations in the PTEN promoter might alternatively account for a subset of apparently mutation-negative patients with CS and BRRS. Using real time and multiplex PCR techniques, we identified three germline hemizygous PTEN deletions in 122 apparently mutation-negative patients with classic CS (N=95) or BRRS (N=27). Fine mapping suggested that one deletion encompassed the whole gene and the other two included exon 1 and encompassed exons 1-5 of PTEN, respectively. Two patients with the deletion were diagnosed with BRRS, and one patient with the deletion was diagnosed with BRRS/CS overlap (features of both). Thus 3 (11%) of 27 patients with BRRS or BRRS/CS-overlap had PTEN deletions. Analysis of the PTEN promoter revealed nine cases (7.4%) harboring heterozygous germline mutations. All nine had classic CS, representing almost 10% of all subjects with CS. Eight had breast cancers and/or benign breast tumors but, otherwise, oligo-organ involvement. PTEN protein analysis, from one deletion-positive and five PTEN-promoter-mutation-positive samples, revealed a 50% reduction in protein and multiple bands of immunoreactive protein, respectively. In contrast, control samples showed only the expected band. Further, an elevated level of phosphorylated Akt was detected in the five promoter-mutation-positive samples, compared with controls, indicating an absence of or marked reduction in functional PTEN. These data suggest that patients with BRRS and CS without PCR-detected intragenic PTEN mutations be offered clinical deletion analysis and promoter-mutation analysis, respectively.


Journal of Cell Science | 2008

The nuclear affairs of PTEN

Sarah M. Planchon; Kristin A. Waite; Charis Eng

PTEN encodes a major tumor-suppressor protein that is a dual-specificity phosphatase. Inactivation of PTEN has been shown to be involved in heritable and sporadic cancers. Mutation or deletion of PTEN, historically the most commonly identified mechanisms of inactivation of tumor suppressors, is found only in the minority of sporadic non-cultured primary cancers, which indicates that there might be other, novel mechanisms of inactivation. Despite the absence of a classic nuclear localization signal, PTEN enters the nucleus by several mechanisms, including simple diffusion, active shuttling, cytoplasmic-localization-signal-dependent export and monoubiquitylation-dependent import. Cytoplasmic PTEN has a well-known role as a negative regulator of the PI3K/AKT pathway; however, it is becoming clear that cytosolic PTEN is not the same as nuclear PTEN. Nuclear PTEN plays a role in chromosome stability, DNA repair, cell cycle arrest and cellular stability. The balance between these functions is an important factor in determining whether a cell remains benign or becomes neoplastic.


American Journal of Human Genetics | 2008

Germline Mutations and Variants in the Succinate Dehydrogenase Genes in Cowden and Cowden-like Syndromes

Ying Ni; Kevin M. Zbuk; Tammy Sadler; Attila Patócs; Glenn P. Lobo; Emily Edelman; Petra Platzer; Mohammed S. Orloff; Kristin A. Waite; Charis Eng

Individuals with PTEN mutations have Cowden syndrome (CS), associated with breast, thyroid, and endometrial neoplasias. Many more patients with features of CS, not meeting diagnostic criteria (termed CS-like), are evaluated by clinicians for CS-related cancer risk. Germline mutations in succinate dehydrogenase subunits SDHB-D cause pheochromocytoma-paraganglioma syndrome. One to five percent of SDHB/SDHD mutation carriers have renal cell or papillary thyroid carcinomas, which are also CS-related features. SDHB-D may be candidate susceptibility genes for some PTEN mutation-negative individuals with CS-like cancers. To address this hypothesis, germline SDHB-D mutation analysis in 375 PTEN mutation-negative CS/CS-like individuals was performed, followed by functional analysis of identified SDH mutations/variants. Of 375 PTEN mutation-negative CS/CS-like individuals, 74 (20%) had increased manganese superoxide dismutase (MnSOD) expression, a manifestation of mitochondrial dysfunction. Among these, 10 (13.5%) had germline mutations/variants in SDHB (n = 3) or SDHD (7), not found in 700 controls (p < 0.001). Compared to PTEN mutation-positive CS/CS-like individuals, those with SDH mutations/variants were enriched for carcinomas of the female breast (6/9 SDH versus 30/107 PTEN, p < 0.001), thyroid (5/10 versus 15/106, p < 0.001), and kidney (2/10 versus 4/230, p = 0.026). In the absence of PTEN alteration, CS/CS-like-related SDH mutations/variants show increased phosphorylation of AKT and/or MAPK, downstream manifestations of PTEN dysfunction. Germline SDH mutations/variants occur in a subset of PTEN mutation-negative CS/CS-like individuals and are associated with increased frequencies of breast, thyroid, and renal cancers beyond those conferred by germline PTEN mutations. SDH testing should be considered for germline PTEN mutation-negative CS/CS-like individuals, especially in the setting of breast, thyroid, and/or renal cancers.


International Journal of Cancer | 2006

Increased PTEN expression due to transcriptional activation of PPARγ by Lovastatin and Rosiglitazone

Rosemary E. Teresi; Chung Wai Shaiu; Ching-Shih Chen; V. Krishna Chatterjee; Kristin A. Waite; Charis Eng

Germline mutations in the tumor suppressor gene PTEN (protein phosphatase and tensin homolog located on chromosome ten) predispose to heritable breast cancer. The transcription factor PPARγ has also been implicated as a tumor suppressor pertinent to a range of neoplasias, including breast cancer. A putative PPARγ binding site in the PTEN promoter indicates that PPARγ may regulate PTEN expression. We show here that the PPARγ agonist Rosiglitazone, along with Lovastatin, induce PTEN in a dose‐ and time‐dependent manner. Lovastatin‐ or Rosiglitazone‐induced PTEN expression was accompanied by a decrease in phosphorylated‐AKT and phosphorylated‐MAPK and an increase in G1 arrest. We demonstrate that the mechanism of Lovastatin‐ and Rosiglitazone‐associated PTEN expression was a result of an increase in PTEN mRNA, suggesting that this increase was transcriptionally‐mediated. Compound‐66, an inactive form of Rosiglitazone, which is incapable of activating PPARγ, was unable to elicit the same response as Rosiglitazone, signifying that the Rosiglitazone response is PPARγ‐mediated. To support this, we show, using reporter assays including dominant‐negative constructs of PPARγ, that both Lovastatin and Rosiglitazone specifically mediate PPARγ activation. Additionally, we demonstrated that cells lacking PTEN or PPARγ were unable to induce PTEN mediated cellular events in the presence of Lovastatin or Rosiglitazone. These data are the first to demonstrate that Lovastatin can signal through PPARγ and directly demonstrate that PPARγ can upregulate PTEN at the transcriptional level. Since PTEN is constitutively active, our data indicates it may be worthwhile to examine Rosiglitazone and Lovastatin stimulation as mechanisms to increase PTEN expression for therapeutic and preventative strategies including cancer, diabetes mellitus and cardiovascular disease.


American Journal of Human Genetics | 2008

Differential Expression of PTEN-Targeting MicroRNAs miR-19a and miR-21 in Cowden Syndrome

Marcus G. Pezzolesi; Petra Platzer; Kristin A. Waite; Charis Eng

Germline mutations in the gene encoding phosphatase and tensin homolog deleted on chromosome ten (PTEN [MIM 601728]) are associated with a number of clinically distinct heritable cancer syndromes, including both Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS). Seemingly identical pathogenic PTEN mutations have been observed in patients with CS and BRRS, as well as in patients with incomplete features of CS, referred to as CS-like (CSL) patients. These observations indicate that additional, unidentified, genetic and epigenetic factors act as phenotypic modifiers in these disorders. These genetic factors could also contribute to disease in patients with CS, CSL, or BRRS without identifiable PTEN mutations. Two potential modifiers are miR-19a and miR-21, which are previously identified PTEN-targeting miRNAs. We investigated the role of these miRNAs by characterizing their relative expression levels in PTEN-mutation-positive and PTEN-mutation-negative patients with CS, CSL, or BRRS. Interestingly, we observed differential expression of miR-19a and miR-21 in our PTEN-mutation-positive patients. Both were found to be significantly overexpressed within this group (p < 0.01) and were inversely correlated with germline PTEN protein levels. Similarly, the relative expression of miR-19a and miR-21 was differentially expressed in a series of PTEN-mutation-negative patients with CS or CSL with variable clinical phenotypes and decreased full-length PTEN protein expression. Among PTEN-mutation-positive patients with CS, both miRNAs were significantly overexpressed (p = 0.006-0.013). Taken together, our study results suggest that differential expression of PTEN-targeting miR-19a and miR-21 modulates the PTEN protein levels and the CS and CSL phenotypes, irrespective of the patients mutation status, and support their roles as genetic modifiers in CS and CSL.


Cancer Research | 2006

Nuclear localization of PTEN is regulated by Ca2+ through a tyrosil phosphorylation-independent conformational modification in major vault protein

Takeo Minaguchi; Kristin A. Waite; Charis Eng

We have recently shown in MCF-7 cells that nuclear phosphatase and tensin homologue deleted on chromosome 10 (PTEN) down-regulates phosphorylation of p44/42 and cyclin D1 and induces G(1) cell cycle arrest, whereas cytoplasmic PTEN down-regulates phosphorylation of Akt, up-regulates p27, and induces apoptosis. In this manner, nucleocytoplasmic partitioning of PTEN seems to differentially regulate the cell cycle and apoptosis. We have also reported that PTEN has nuclear localization signal-like sequences required for major vault protein (MVP)-mediated nuclear translocation. To date, several other proteins are reported to interact with MVP, including extracellular signal-regulated kinases and steroid receptors, suggesting that MVP is likely to be involved in signal transduction through nucleocytoplasmic transport. However, the exact mechanism of MVP-mediated nucleocytoplasmic shuttling remains elusive. PTEN reportedly interacts in vitro with the EF hand-like motif of MVP in a Ca(2+)-dependent manner. The current study shows that small interfering RNA-mediated MVP silencing decreases the nuclear localization of PTEN and increases phosphorylation of nuclear p44/42. We show in situ that PTEN-MVP interaction is Ca(2+) dependent and is abolished by Mg(2+). Nuclear localization of PTEN is decreased by increasing Ca(2+) levels in culture medium in a dose-dependent manner. Ca(2+) ionophore A23187 increases nuclear localization of PTEN and decreases phosphorylation of nuclear p44/42. Finally, we show that Ca(2+)-dependent PTEN-MVP interaction is not related to MVPs tyrosil phosphorylation but rather due to its conformational modification. Our observations suggest that Ca(2+) regulates PTENs nuclear entry through a tyrosil phosphorylation-independent conformational change in MVP. Collectively, our data present evidence of a novel crosstalk between the Ca(2+) signaling-mediated regulation of the cell cycle and MVP-mediated nuclear PTEN localization and function.


Human Molecular Genetics | 2008

ATP modulates PTEN subcellular localization in multiple cancer cell lines

Glenn P. Lobo; Kristin A. Waite; Sarah M. Planchon; Todd Romigh; Janet A. Houghton; Charis Eng

The tumour suppressor gene PTEN plays an important somatic role in both hereditary and sporadic breast carcinogenesis. While the role of PTENs lipid phosphatase activity, as a negative regulator of the cytoplasmic phosphatidylinositol-3-kinase/Akt pathway is well known, it is now well established that PTEN exists and functions in the nucleus. Multiple mechanisms of regulating PTENs subcellular localization have been reported. However none are ubiquitous across multiple cancer cell lines and tissue types. We show here that adenosine triphosphate (ATP) regulates PTEN subcellular localization in a variety of different cancer cell lines, including those derived from breast, colon and thyroid carcinomas. Cells deficient in ATP show an increased level of nuclear PTEN protein. This increase in PTEN is reversed when cells are supplemented with ATP, ADP or AMP. In contrast, the addition of the non-hydrolyzable analogue ATPγS, did not reverse nuclear PTEN protein levels in all the cell types tested. To our knowledge, this is the first report that describes a regulation of PTEN subcellular localization that is not specific to one cell line or tissue type, but appears to be common across a variety of cell lineages.


Human Molecular Genetics | 2009

Germline and somatic cancer-associated mutations in the ATP-binding motifs of PTEN influence its subcellular localization and tumor suppressive function

Glenn P. Lobo; Kristin A. Waite; Sarah M. Planchon; Todd Romigh; Najah T. Nassif; Charis Eng

Germline and somatic PTEN mutations are found in Cowden syndrome (CS) and multiple sporadic malignancies, respectively. PTEN function appears to be modulated by subcellular compartmentalization, and mislocalization may affect function. We have shown that cellular ATP levels affect nuclear PTEN levels. Here, we examined the ATP-binding capabilities of PTEN and functional consequences, relevant to cancer-associated mutations. PTEN mutation analysis of CS patients and sporadic colorectal carcinomas and comparative aminoacid analysis were utilized to identify mutations in ATP-binding motifs. The ability of wild-type (WT) or mutant PTEN to bind ATP was assessed by ATP–agarose-binding assays. Subcellular fractionation, western blotting, confocal microscopy and growth assays were used to determine relative nuclear-cytoplasmic localization and function. Somatic colorectal carcinoma-derived PTEN missense mutations were associated with nuclear mislocalization. These mutations altered cellular proliferation, apoptosis and anchorage-dependent growth. Examination of PTENs amino acid sequence revealed these mutations resided in previously undescribed ATP-binding motifs (c.60–73; c.122–136). In contrast to WT PTEN, both cancer-associated somatic and germline-derived PTEN missense mutations, which lie within the ATP-binding motifs, result in mutant PTEN that does not bind ATP efficiently. We also show that CS patients with germline ATP-binding motif-mutations had nuclear PTEN mislocalization. Of four unrelated patients with functional germline ATP-binding domain mutations, all three female patients had breast cancers. Germline and somatic mutations within PTENs ATP-binding domain play important pathogenic roles in both heritable and sporadic carcinogenesis by PTEN nuclear mislocalization resulting in altered signaling and growth. Manipulation of ATP may represent novel therapies in tumors with such PTEN alterations.

Collaboration


Dive into the Kristin A. Waite's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge