Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher Alvarez-Breckenridge is active.

Publication


Featured researches published by Christopher Alvarez-Breckenridge.


Nature Medicine | 2012

NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors

Christopher Alvarez-Breckenridge; Jianhua Yu; Richard L. Price; Jeffrey Wojton; Jason C. Pradarelli; Hsiaoyin Mao; Min Wei; Yan Wang; Shun He; Jayson Hardcastle; Soledad Fernandez; Balveen Kaur; Sean E. Lawler; Eric Vivier; Ofer Mandelboim; Alessandro Moretta; Michael A. Caligiuri; E. Antonio Chiocca

The role of the immune response to oncolytic Herpes simplex viral (oHSV) therapy for glioblastoma is controversial because it might enhance or inhibit efficacy. We found that within hours of oHSV infection of glioblastomas in mice, activated natural killer (NK) cells are recruited to the site of infection. This response substantially diminished the efficacy of glioblastoma virotherapy. oHSV-activated NK cells coordinated macrophage and microglia activation within tumors. In vitro, human NK cells preferentially lysed oHSV-infected human glioblastoma cell lines. This enhanced killing depended on the NK cell natural cytotoxicity receptors (NCRs) NKp30 and NKp46, whose ligands are upregulated in oHSV-infected glioblastoma cells. We found that HSV titers and oHSV efficacy are increased in Ncr1−/− mice and a Ncr1−/− NK cell adoptive transfer model of glioma, respectively. These results demonstrate that glioblastoma virotherapy is limited partially by an antiviral NK cell response involving specific NCRs, uncovering new potential targets to enhance cancer virotherapy.


Journal of Virology | 2012

The Histone Deacetylase Inhibitor Valproic Acid Lessens NK Cell Action against Oncolytic Virus-Infected Glioblastoma Cells by Inhibition of STAT5/T-BET Signaling and Generation of Gamma Interferon

Christopher Alvarez-Breckenridge; Jianhua Yu; Richard L. Price; Min Wei; Yan Wang; Michał Nowicki; Yoonhee P. Ha; Stephen M. Bergin; Christine Hwang; Soledad Fernandez; Balveen Kaur; Michael A. Caligiuri; E. Antonio Chiocca

ABSTRACT Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.


Blood | 2013

MicroRNAs activate natural killer cells through Toll-like receptor signaling.

Shun He; Jianhong Chu; Lai-Chu Wu; Hsiaoyin Mao; Yong Peng; Christopher Alvarez-Breckenridge; Tiffany Hughes; Min Wei; Jianying Zhang; Shunzong Yuan; Sumeet Sandhu; Sumithira Vasu; Don M. Benson; Craig C. Hofmeister; Xiaoming He; Kalpana Ghoshal; Steven M. Devine; Michael A. Caligiuri; Jianhua Yu

MicroRNAs (miRNAs) bind to complementary sequences of target mRNAs, resulting in translational repression or target degradation and thus gene silencing. miRNAs are abundant in circulating blood, yet it is not known whether, as a class of regulatory molecules, they interact with human natural killer (NK) cells. Here we found that the treatment of human NK cells with several mature miRNAs in the presence of a low concentration of interleukin-12 induced CD69 expression, interferon-γ production, and degranulation marker CD107a expression. In vivo, infusion of several miRNAs alone in murine peripheral blood also resulted in comparable NK-cell activation, but not T-cell activation. Furthermore, miRNA administration significantly protected mice from tumor development in an NK cell-dependent manner. Mechanistically, we found that miRNA stimulation led to downstream activation of nuclear factor κB (NF-κB), an effect that was blunted by a block in Toll-like receptor 1(TLR1) signaling and attenuated in lymphoma patients. Knockdown of TLR1 resulted in less activation by miRNAs. Collectively, we show that miRNAs have a capacity to selectively activate innate immune effector cells that is, at least in part, via the TLR1-NF-κB signaling pathway. This may be important in the normal host defense against infection and/or malignant transformation.


Recent Patents on Cns Drug Discovery | 2009

Advances in oncolytic virus therapy for glioma.

Amy Haseley; Christopher Alvarez-Breckenridge; Abhik Ray Chaudhury; Balveen Kaur

The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising.


Journal of Clinical Investigation | 2011

NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human

Jianhua Yu; Takeki Mitsui; Min Wei; Hsiaoyin Mao; Jonathan P. Butchar; Mithun Vinod Shah; Jianying Zhang; Anjali Mishra; Christopher Alvarez-Breckenridge; Xingluo Liu; Shujun Liu; Akihiko Yokohama; Rossana Trotta; Guido Marcucci; Don M. Benson; Thomas P. Loughran; Susheela Tridandapani; Michael A. Caligiuri

IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46⁻ NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46⁻ NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46⁻ NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia.


Cancer Research | 2013

Cytomegalovirus Contributes to Glioblastoma in the Context of Tumor Suppressor Mutations

Richard L. Price; Jieun Song; Katherine Bingmer; Tae Hyong Kim; Yi Jy; Michał Nowicki; Xiaokui Mo; Todd Hollon; Murnan E; Christopher Alvarez-Breckenridge; Soledad Fernandez; Balveen Kaur; Rivera A; Michael Oglesbee; Charles H. Cook; Chiocca Ea; Chang-Hyuk Kwon

To study the controversial role of cytomegalovirus (CMV) in glioblastoma, we assessed the effects of murine CMV (MCMV) perinatal infection in a GFAP-cre; Nf1(loxP/+); Trp53(-/+) genetic mouse model of glioma (Mut3 mice). Early on after infection, MCMV antigen was predominantly localized in CD45+ lymphocytes in the brain with active viral replication and local areas of inflammation, but, by 7 weeks, there was a generalized loss of MCMV in brain, confirmed by bioluminescent imaging. MCMV-infected Mut3 mice exhibited a shorter survival time from their gliomas than control Mut3 mice perinatally infected with mock or with a different neurotropic virus. Animal survival was also significantly shortened when orthotopic gliomas were implanted in mice perinatally infected with MCMV versus controls. MCMV infection increased phosphorylated STAT3 (p-STAT3) levels in neural stem cells (NSC) harvested from Mut3 mice subventricular zone, and, in vivo, there was increased p-STAT3 in NSCs in MCMV-infected compared with control mice. Of relevance, human CMV (HCMV) also increased p-STAT3 and proliferation of patient-derived glioblastoma neurospheres, whereas a STAT3 inhibitor reversed this effect in vitro and in vivo. These findings thus associate CMV infection to a STAT3-dependent modulatory role in glioma formation/progression in the context of tumor suppressor mutations in mice and possibly in humans.


Chemical Reviews | 2009

Pharmacologic and Chemical Adjuvants in Tumor Virotherapy

Christopher Alvarez-Breckenridge; Balveen Kaur; E. Antonio Chiocca

For almost two decades, there has been interest in using viruses to deliver genes into cells. One particular approach consists of oncolytic viruses (OVs), which can selectively enter and replicate in neoplastic cells leading to their lytic destruction with minimal damage to surrounding normal tissue. OVs include a wide range of viruses that have been selected or genetically engineered such that viral replication is limited to permissive cancer cells with specific mutated cellular pathways. OVs have been designed to replicate only in tumors that have either activation of specific oncogenes or inactivation of specific tumor suppressor pathways.1–7 Table 1 presents an overview of specific OVs along with their salient properties that are being studied for the treatment of malignant gliomas. Table 1 Features of Oncolytic Viruses Being Used for Glioma Therapy Some OVs demonstrate selective tropism for entry into tumor cells.8–12 Second generation viruses that are “armed” by incorporation of prodrug activating genes,13–20 imaging genes,21,22 immunostimulatory genes,23–27 and antiangiogenesis genes28,29 are currently being investigated for safety and efficacy. The appropriate route of delivery of OVs remains to be defined in terms of advantages and disadvantages. For example, intratumoral viral delivery has the advantage of circumventing rapid viral clearance within the bloodstream due to antibody and complement neutralization of the virus, clearance by the liver, viral binding to nontumor cells that contain receptors for the virus, and barriers to migration across the vascular endothelium. However, intravenous administration is the route of choice for the treatment of both primary tumors that are not locally confined and metastatic disease. Methods of avoiding these limitations to viral administration will be discussed later in this review and include the development of various stealth agents and carrier cells to achieve nonimmunogenic viral delivery. With Chinas recent approval of the first oncolytic virus, adenovirus H101,30 a number of clinical trials are underway in the United States and Europe. Table 2 presents a summary of the glioma clinical trials that have been performed to date.31–38 Through the process of testing OVs in the clinic, however, a number of questions must be addressed. For instance, the pharmacokinetics of viral infection, replication, and spread should be ascertained noninvasively. Two novel oncolytic measles viruses are attempting to answer these questions. First, a measles virus encoding the soluble extracellular human carcinoembryonic antigen (CEA) allows for noninvasive analysis of viral propagation by measuring CEA levels.39,40 Second, by incorporating the thyroidal sodium iodide symporter in the measles vector, clinicians are able to use radioactive iodine tracers in order to monitor the status of viral infection using single-photon-emission computed tomography or positron-emission tomography.21,41–43 Beyond questions related to pharmacokinetics, clinical implementation of OVs is hampered by technical challenges in producing large amounts of high-titer virus. Lastly, performance of phase III clinical trials to assess clinical utility and guide the future directions of basic research in the field of OV therapy is needed. Table 2 Clinical Trials Using Oncolytic Viruses for the Treatment of Malignant Gliomasa For instance, preclinical data suggests that the ability of OVs to amplify within cancer cells should lead to increased intratumoral titers independent of the initial inoculum.1,27,44–48 While these findings have been corroborated by numerous in vitro findings, clinical efficacy has been limited due to significantly attenuated in vivo viral replication.49–56 In fact, a recent clinical trial shows replication of inoculated virus in tumor, albeit at levels that appear to be fairly reduced.32,57 Attenuated in vivo viral replication may be due to inefficient intratumoral viral dispersal, to barriers imposed by the tumor microenvironment, or to rapid viral clearance by host immune responses. Future clinical trials will need to take these host factors into account in order to achieve maximal OV-mediated tumoricidal activity while simultaneously avoiding systemic toxicity to the host. Elucidation of a variety of tumor- and host-based factors that limit viral infection, replication, and propagation could lead to the design of combinatorial molecular approaches combining oncolysis with pharmacologic agents designed to circumvent such host barriers to OV lysis of tumors. Additionally, certain classes of pharmacological agents can alter cellular homeostasis and activate cellular cascades that provide an environment conducive for viral replication. In this review, we will briefly describe both the current state of knowledge of host responses that limit OV therapy and the cellular pathways that can be targeted to enhance OV efficacy, followed by a review of potential pharmacologic and chemical approaches that could be employed to circumvent these obstacles.


Clinical Cancer Research | 2012

Copper Chelation Enhances Antitumor Efficacy and Systemic Delivery of Oncolytic HSV

Ji Young Yoo; Jason C. Pradarelli; Amy Haseley; Jeffrey Wojton; Azeem Kaka; Anna Bratasz; Christopher Alvarez-Breckenridge; Jun Ge Yu; Kimerly A. Powell; Andrew P. Mazar; Theodoros N. Teknos; E. Antonio Chiocca; Joseph C. Glorioso; Matthew Old; Balveen Kaur

Purpose: Copper in serum supports angiogenesis and inhibits replication of wild-type HSV-1. Copper chelation is currently being investigated as an antiangiogenic and antineoplastic agent in patients diagnosed with cancer. Herpes simplex virus–derived oncolytic viruses (oHSV) are being evaluated for safety and efficacy in patients, but several host barriers limit their efficacy. Here, we tested whether copper inhibits oHSV infection and replication and whether copper chelation would augment therapeutic efficacy of oHSV. Experimental Design: Subcutaneous and intracranial tumor-bearing mice were treated with oHSV ± ATN-224 to evaluate tumor burden and survival. Virus replication and cell killing was measured in the presence or absence of the copper chelating agent ATN-224 and in the presence or absence of copper in vitro. Microvessel density and changes in perfusion were evaluated by immunohistochemistry and dynamic contrast enhanced MRI (DCE-MRI). Serum stability of oHSV was measured in mice fed with ATN-224. Tumor-bearing mice were injected intravenously with oHSV; tumor burden and amount of virus in tumor tissue were evaluated. Results: Combination of systemic ATN-224 and oHSV significantly reduced tumor growth and prolonged animal survival. Immunohistochemistry and DCE-MRI imaging confirmed that ATN-224 reduced oHSV-induced blood vessel density and vascular leakage. Copper at physiologically relevant concentrations inhibited oHSV replication and glioma cell killing, and this effect was rescued by ATN-224. ATN-224 increased serum stability of oHSV and enhanced the efficacy of systemic delivery. Conclusion: This study shows that combining ATN-224 with oHSV significantly increased serum stability of oHSV and greatly enhanced its replication and antitumor efficacy. Clin Cancer Res; 18(18); 4931–41. ©2012 AACR.


OncoImmunology | 2015

Are BiTEs the “missing link” in cancer therapy?

Carter M. Suryadevara; Patrick C. Gedeon; Luis Sanchez-Perez; Terence Verla; Christopher Alvarez-Breckenridge; Bryan D. Choi; Peter E. Fecci; John H. Sampson

Conventional treatment for cancer routinely includes surgical resection and some combination of chemotherapy and radiation. These approaches are frequently accompanied by unintended and highly toxic collateral damage to healthy tissues, which are offset by only marginal prognostic improvements in patients with advanced cancers. This unfortunate balance has driven the development of novel therapies that aim to target tumors both safely and efficiently. Over the past decade, mounting evidence has supported the therapeutic utility of T-cell-centered cancer immunotherapy, which, in its various iterations, has been shown capable of eliciting highly precise and robust antitumor responses both in animal models and human trials. The identification of tumor-specific targets has further fueled a growing interest in T-cell therapies given their potential to circumvent the non-specific nature of traditional treatments. Of the several strategies geared toward achieving T-cell recognition of tumor, bispecific antibodies (bsAbs) represent a novel class of biologics that have garnered enthusiasm in recent years due to their versatility, specificity, safety, cost, and ease of production. Bispecific T-cell Engagers (BiTEs) are a subclass of bsAbs that are specific for CD3 on one arm and a tumor antigen on the second. As such, BiTEs function by recruiting and activating polyclonal populations of T-cells at tumor sites, and do so without the need for co-stimulation or conventional MHC recognition. Blinatumomab, a well-characterized BiTE, has emerged as a promising recombinant bscCD19×CD3 construct that has demonstrated remarkable antitumor activity in patients with B-cell malignancies. This clinical success has resulted in the rapid extension of BiTE technology against a greater repertoire of tumor antigens and the recent US Food and Drug Administrations (FDA) accelerated approval of blinatumomab for the treatment of a rare form of acute lymphoblastic leukemia (ALL). In this review, we dissect the role of T-cell therapeutics in the new era of cancer immunotherapy, appraise the value of CAR T-cells in the context of solid tumors, and discuss why the BiTE platform may rescue several of the apparent deficits and shortcomings of competing immunotherapies to support its widespread clinical application.


Advances in Virology | 2012

Deciphering the Multifaceted Relationship between Oncolytic Viruses and Natural Killer Cells

Christopher Alvarez-Breckenridge; Jianhua Yu; Balveen Kaur; Michael A. Caligiuri; E. Antonio Chiocca

Despite active research in virotherapy, this apparently safe modality has not achieved widespread success. The immune response to viral infection appears to be an essential factor that determines the efficacy of oncolytic viral therapy. The challenge is determining whether the viral-elicited immune response is a hindrance or a tool for viral treatment. NK cells are a key component of innate immunity that mediates antiviral immunity while also coordinating tumor clearance. Various reports have suggested that the NK response to oncolytic viral therapy is a critical factor in premature viral clearance while also mediating downstream antitumor immunity. As a result, particular attention should be given to the NK cell response to various oncolytic viral vectors and how their antiviral properties can be suppressed while maintaining tumor clearance. In this review we discuss the current literature on the NK response to oncolytic viral infection and how future studies clarify this intricate response.

Collaboration


Dive into the Christopher Alvarez-Breckenridge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Antonio Chiocca

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Wei

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge