Kristina Kirschner
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kristina Kirschner.
Genes & Development | 2009
Andrew J. Young; Masako Narita; Manuela Ferreira; Kristina Kirschner; Mahito Sadaie; Jeremy F. J. Darot; Simon Tavaré; Satoko Arakawa; Shigeomi Shimizu; Fiona M. Watt; Masashi Narita
As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.
Molecular Cell | 2012
Tamir Chandra; Kristina Kirschner; Jean Yves Thuret; Benjamin D. Pope; Tyrone Ryba; Scott Newman; Kashif Ahmed; Shamith Samarajiwa; Rafik Salama; Thomas Carroll; Rory Stark; Rekin’s Janky; Masako Narita; Lixiang Xue; Agustin Chicas; Sabrina Nũnez; Ralf Janknecht; Yoko Hayashi-Takanaka; Michael D. Wilson; Aileen Marshall; Duncan T. Odom; M. Madan Babu; David P. Bazett-Jones; Simon Tavaré; Paul A.W. Edwards; Scott W. Lowe; Hiroshi Kimura; David M. Gilbert; Masashi Narita
The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.
Nature Methods | 2017
Vladimir Yu. Kiselev; Kristina Kirschner; Michael T. Schaub; Tallulah S. Andrews; Andrew Yiu; Tamir Chandra; Kedar Nath Natarajan; Wolf Reik; Mauricio Barahona; Anthony R. Green; Martin Hemberg
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.
Cell Reports | 2015
Tamir Chandra; Philip Ewels; Stefan Schoenfelder; Mayra Furlan-Magaril; Steven W. Wingett; Kristina Kirschner; Jean-Yves Thuret; Simon Andrews; Peter Fraser; Wolf Reik
Summary Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.
Oncogene | 2003
Cecilia Gunnarsson; Marie Ahnström; Kristina Kirschner; Birgit Olsson; Bo Nordenskjöld; Lars Erik Rutqvist; Lambert Skoog; Olle Stål
Estrogens play a crucial role in the development of breast cancer. Estradiol can be produced in the breast tissue in situ, and one of the enzymes involved in this process is 17β-hydroxysteriod dehydrogenase (17β-HSD) type 1 that catalyzes the interconversion of estrone (E1) to the biologically more potent estradiol (E2). The gene coding for 17β-HSD type 1 (HSD17B1) is located at 17q12–21, close to the more studied ERBB2 and BRCA1. The aim of this study was to investigate if HSD17B1 shows an altered gene copy number in breast cancer. We used real-time PCR and examined 221 postmenopausal breast tumors for amplification of HSD17B1 and ERBB2. In all, 32 tumors (14.5%) showed amplification of HSD17B1 and 21% were amplified for ERBB2. Amplification of the two genes was correlated (P=0.00078) and in 14 tumors (44%) with amplification of HSD17B1, ERBB2 was co amplified. The patients with amplification in at least one of the genes had a significantly worse outcome than patients without (P=0.0059). For estrogen receptor (ER)-positive patients who received adjuvant tamoxifen, amplification of HSD17B1 was related to decreased breast cancer survival (P=0.017), whereas amplification of ERRB2 was not. Amplification of HSD17B1 might be an indicator of adverse prognosis among ER-positive patients, and possibly a mechanism for decreased benefit from tamoxifen treatment.
Molecular Cell | 2013
Michelle C. Ward; Michael D. Wilson; Nuno L. Barbosa-Morais; Dominic Schmidt; Rory Stark; Qun Pan; Petra C. Schwalie; Suraj Menon; Margus Lukk; Stephen Watt; David Thybert; Claudia Kutter; Kristina Kirschner; Paul Flicek; Benjamin J. Blencowe; Duncan T. Odom
Summary At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it.
PLOS Biology | 2013
David G. Kent; Juan Li; Hinal Tanna; Juergen Fink; Kristina Kirschner; Dean C. Pask; Yvonne Silber; Tina L. Hamilton; Rachel Sneade; B. D. Simons; Anthony R. Green
In this study, single cell assays and mathematical modeling demonstrate that a single oncogenic point mutation can negatively affect hematopoietic stem cells while leaving progenitor cell expansion intact.
The EMBO Journal | 2016
Hyun Jung Park; Juan Li; Rebecca Hannah; Simon C. Biddie; Ana I Leal‐Cervantes; Kristina Kirschner; David Flores-Santa Cruz; Veronika Sexl; Berthold Göttgens; Anthony R. Green
Metazoan development is regulated by transcriptional networks, which must respond to extracellular cues including cytokines. The JAK/STAT pathway is a highly conserved regulatory module, activated by many cytokines, in which tyrosine‐phosphorylated STATs (pSTATs) function as transcription factors. However, the mechanisms by which STAT activation modulates lineage‐affiliated transcriptional programs are unclear. We demonstrate that in the absence of thrombopoietin (TPO), tyrosine‐unphosphorylated STAT5 (uSTAT5) is present in the nucleus where it colocalizes with CTCF and represses a megakaryocytic transcriptional program. TPO‐mediated phosphorylation of STAT5 triggers its genome‐wide relocation to STAT consensus sites with two distinct transcriptional consequences, loss of a uSTAT5 program that restrains megakaryocytic differentiation and activation of a canonical pSTAT5‐driven program which includes regulators of apoptosis and proliferation. Transcriptional repression by uSTAT5 reflects restricted access of the megakaryocytic transcription factor ERG to target genes. These results identify a previously unrecognized mechanism of cytokine‐mediated differentiation.
PLOS Genetics | 2015
Kristina Kirschner; Shamith Samarajiwa; Jonathan M. Cairns; Suraj Menon; Pedro A. Pérez-Mancera; Kosuke Tomimatsu; Camino Bermejo-Rodríguez; Yoko Ito; Tamir Chandra; Masako Narita; Scott K. Lyons; Andy G. Lynch; Hiroshi Kimura; Tetsuya Ohbayashi; Simon Tavaré; Masashi Narita
The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.
Current Opinion in Cell Biology | 2016
Tamir Chandra; Kristina Kirschner
Acute cellular stress caused by oncogene activation or high levels of DNA damage can engage a tumour suppressive response, which can lead to cellular senescence. Chronic cellular stress evoked by low levels of DNA damage or telomere erosion is involved in the ageing process. In oncogene induced senescence in fibroblasts, a dramatic rearrangement of heterochromatin into foci and accumulation of constitutive heterochromatin is well documented. In contrast, a loss of heterochromatin has been described in replicative senescence and premature ageing syndromes. The distinct nuclear phenotypes that accompany the stress response highlight the differences between acute and chronic stress models, and this review will address the differences and similarities between these models with a focus on chromosome organisation and heterochromatin.