Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kuniyuki Kano is active.

Publication


Featured researches published by Kuniyuki Kano.


Journal of Biochemistry | 2015

Lysophosphatidic acid as a lipid mediator with multiple biological actions

Shizu Aikawa; Takafumi Hashimoto; Kuniyuki Kano; Junken Aoki

Lysophosphatidic acid (LPA) is one of the simplest glycerophospholipids with one fatty acid chain and a phosphate group as a polar head. Although LPA had been viewed just as a metabolic intermediate in de novo lipid synthetic pathways, it has recently been paid much attention as a lipid mediator. LPA exerts many kinds of cellular processes, such as cell proliferation and smooth muscle contraction, through cognate G protein-coupled receptors. Because lipids are not coded by the genome directly, it is difficult to know their patho- and physiological roles. However, recent studies have identified several key factors mediating the biological roles of LPA, such as receptors and producing enzymes. In addition, studies of transgenic and gene knockout animals for these LPA-related genes, have revealed the biological significance of LPA. In this review we will summarize recent advances in the studies of LPA production and its roles in both physiological and pathological conditions.


Journal of Lipid Research | 2014

Separation and quantification of 2-acyl-1-lysophospholipids and 1-acyl-2-lysophospholipids in biological samples by LC-MS/MS.

Michiyo Okudaira; Asuka Inoue; Akira Shuto; Keita Nakanaga; Kuniyuki Kano; Kumiko Makide; Yoshihisa Tomioka; Junken Aoki

Lysophospholipids (LysoGPs) serve as lipid mediators and precursors for synthesis of diacyl phospholipids (GPs). LysoGPs detected in cells have various acyl chains attached at either the sn-1 or sn-2 position of the glycerol backbone. In general, acyl chains at the sn-2 position of 2-acyl-1-LysoGPs readily move to the sn-1 position, generating 1-acyl-2-lyso isomers by a nonenzymatic reaction called intra-molecular acyl migration, which has hampered the detection of 2-acyl-1-LysoGPs in biological samples. In this study, we developed a simple and versatile method to separate and quantify 2-acyl-1- and 1-acyl-2-LysoGPs. The main point of the method was to extract LysoGPs at pH 4 and 4°C, conditions that were found to completely eliminate the intra-molecular acyl migration. Under the present conditions, the relative amounts of 2-acyl-1-LysoGPs and 1-acyl-2-LysoGPs did not change at least for 1 week. Further, in LysoGPs extracted from cells and tissues under the present conditions, most of the saturated fatty acids (16:0 and 18:0) were found in the sn-1 position of LysoGPs, while most of the PUFAs (18:2, 20:4, 22:6) were found in the sn-2 position. Thus the method can be used to elucidate the in vivo role of 2-acyl-1-LysoGPs.


Nature Structural & Molecular Biology | 2016

Structural basis for specific inhibition of Autotaxin by a DNA aptamer

Kazuki Kato; Hisako Ikeda; Shin Miyakawa; Satoshi Futakawa; Yosuke Nonaka; Masatoshi Fujiwara; Shinichi Okudaira; Kuniyuki Kano; Junken Aoki; Junko Morita; Ryuichiro Ishitani; Hiroshi Nishimasu; Yoshikazu Nakamura; Osamu Nureki

ATX is a plasma lysophospholipase D that hydrolyzes lysophosphatidylcholine (LPC) and produces lysophosphatidic acid. To date, no ATX-inhibition-mediated treatment strategies for human diseases have been established. Here, we report anti-ATX DNA aptamers that inhibit ATX with high specificity and efficacy. We solved the crystal structure of ATX in complex with the anti-ATX aptamer RB011, at 2.0-Å resolution. RB011 binds in the vicinity of the active site through base-specific interactions, thus preventing the access of the choline moiety of LPC substrates. Using the structural information, we developed the modified anti-ATX DNA aptamer RB014, which exhibited in vivo efficacy in a bleomycin-induced pulmonary fibrosis mouse model. Our findings reveal the structural basis for the specific inhibition of ATX by the anti-ATX aptamer and highlight the therapeutic potential of anti-ATX aptamers for the treatment of human diseases, such as pulmonary fibrosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Possible Involvement of Minor Lysophospholipids in the Increase in Plasma Lysophosphatidic Acid in Acute Coronary Syndrome

Makoto Kurano; Akiko Suzuki; Asuka Inoue; Yasunori Tokuhara; Kuniyuki Kano; Hirotaka Matsumoto; Koji Igarashi; Ryunosuke Ohkawa; Kazuhiro Nakamura; Tomotaka Dohi; Katsumi Miyauchi; Hiroyuki Daida; Kazuhisa Tsukamoto; Hitoshi Ikeda; Junken Aoki; Yutaka Yatomi

Objective—Lysophosphatidic acids (LPA) have important roles in the field of vascular biology and are derived mainly from lysophosphatidylcholine via autotaxin. However, in our previous study, only the plasma LPA levels, and not the serum autotaxin levels, increased in patients with acute coronary syndrome (ACS). The aim of this study was to elucidate the pathway by which LPA is increased in patients with ACS. Approach and Results—We measured the plasma lysophospholipids species in 141 consecutive patients undergoing coronary angiography (ACS, n=38; stable angina pectoris, n=71; angiographically normal coronary arteries, n=32) using a liquid chromatography-tandem mass spectrometry analysis. Among the ACS subjects, notable increases in the 22:6 LPA, 18:2 LPA, and 20:4 LPA levels were observed. The in vitro experiments revealed that serum incubation mainly increased the 18:2 LPA level, whereas platelet activation increased the 20:4 LPA level. Minor lysophospholipids other than LPA were also elevated in ACS subjects and were well correlated with the corresponding LPA species, including 22:6 LPA. A multiple regression analysis also revealed that lysophosphatidylinositol, lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylglycerol were independent explanatory variables for several LPA species. Conclusions—Specific LPA species, especially long-chain unsaturated LPA, were elevated in ACS patients, along with the corresponding minor lysophospholipids. The elevation of these LPA species might be mainly caused by presently unidentified LPA-producing pathway(s). Minor lysophospholipids might be involved in the generation of LPA, especially 22:6 LPA, and in the pathogenesis of ACS.


Current Medicinal Chemistry | 2008

LPA and its Analogs-Attractive Tools for Elucidation of LPA Biology and Drug Development

Kuniyuki Kano; Naoaki Arima; Mitsuru Ohgami; Junken Aoki

Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with both G-protein-coupled seven transmembrane receptors (GPCRs) and nuclear hormone receptors. So far, seven GPCRs (LPA(1-5) and recently reported GPR87/LPA(6) and P2Y5/LPA(7)) and a nuclear hormone receptor, PPARgamma, have been identified. LPA is predominantly produced in blood and a plasma enzyme, autotaxin, is involved in its production. Recent gene manipulating studies of these proteins have shown that LPA is involved in both pathological and physiological states including brain development, neuropathy pain, implantation, protection against radiation-induced intestinal injury and blood vessel formation. In addition, lipids similar to LPA, such as sphingosine 1-phosphate (S1P) and 2-arachidonylglycerol (2-AG), share common cellular signaling pathways with LPA and are now considered as promising targets of human therapy including immunosuppressant and anti-obesity drugs. Thus, LPA is now one of the most attractive targets for prevention and treatment of various diseases. Receptor-selective antagonists and agonists as well as inhibitors of LPA producing enzymes are undoubtedly useful. Recognition of the ligand, LPA, by each receptor seems to be quite different, as LPA species with various fatty acids at either the sn-1 or sn-2 position of the hydroxy residue activate each receptor quite differently. In the last decade a series of LPA analogs in which the sn-1 or sn-2 hydroxy, acyl chain, glycerol and phosphate group are modified have been created and evaluated by several laboratories. Here we review recent advances in the development of LPA-receptor targeted compounds (agonists and antagonists) and anti-autotaxin inhibitors.


Journal of Medicinal Chemistry | 2015

Structure-activity relationships of lysophosphatidylserine analogs as agonists of G-protein-coupled receptors GPR34, P2Y10, and GPR174.

Masaya Ikubo; Asuka Inoue; Sho Nakamura; Sejin Jung; Misa Sayama; Yuko Otani; Akiharu Uwamizu; Keisuke Suzuki; Takayuki Kishi; Akira Shuto; Jun Ishiguro; Michiyo Okudaira; Kuniyuki Kano; Kumiko Makide; Junken Aoki; Tomohiko Ohwada

Lysophosphatidylserine (LysoPS) is an endogenous lipid mediator generated by hydrolysis of membrane phospholipid phosphatidylserine. Recent ligand screening of orphan G-protein-coupled receptors (GPCRs) identified two LysoPS-specific human GPCRs, namely, P2Y10 (LPS2) and GPR174 (LPS3), which, together with previously reported GPR34 (LPS1), comprise a LysoPS receptor family. Herein, we examined the structure-activity relationships of a series of synthetic LysoPS analogues toward these recently deorphanized LysoPS receptors, based on the idea that LysoPS can be regarded as consisting of distinct modules (fatty acid, glycerol, and l-serine) connected by phosphodiester and ester linkages. Starting from the endogenous ligand (1-oleoyl-LysoPS, 1), we optimized the structure of each module and the ester linkage. Accordingly, we identified some structural requirements of each module for potency and for receptor subtype selectivity. Further assembly of individually structure-optimized modules yielded a series of potent and LysoPS receptor subtype-selective agonists, particularly for P2Y10 and GPR174.


Scientific Reports | 2016

Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase

Junko Morita; Kuniyuki Kano; Kazuki Kato; Hiroyuki Takita; Hideki Sakagami; Yasuo Yamamoto; Emiko Mihara; Hirofumi Ueda; Takanao Sato; Hidetoshi Tokuyama; Hiroyuki Arai; Hiroaki Asou; Junichi Takagi; Ryuichiro Ishitani; Hiroshi Nishimasu; Osamu Nureki; Junken Aoki

Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in choline metabolism. ENPP6 is highly expressed in liver sinusoidal endothelial cells and developing oligodendrocytes, which actively incorporate choline and synthesize PC. ENPP6-deficient mice exhibited fatty liver and hypomyelination, well known choline-deficient phenotypes. The choline moiety of GPC was incorporated into PC in an ENPP6-dependent manner both in vivo and in vitro. The crystal structure of ENPP6 in complex with phosphocholine revealed that the choline moiety of the phosphocholine is recognized by a choline-binding pocket formed by conserved aromatic and acidic residues. The present study provides the molecular basis for ENPP6-mediated choline metabolism at atomic, cellular and tissue levels.


Journal of Cell Science | 2015

LPP3 localizes LPA6 signalling to non-contact sites in endothelial cells.

Hiroshi Yukiura; Kuniyuki Kano; Ryoji Kise; Asuka Inoue; Junken Aoki

ABSTRACT Lysophosphatidic acid (LPA) is emerging as an angiogenic factor, because knockdown of the enzyme that produces it (autotaxin, also known as ENPP2) and its receptors cause severe developmental vascular defects in both mice and fish. In addition, overexpression of autotaxin in mice causes similar vascular defects, indicating that the extracellular amount of LPA must be tightly regulated. Here, we focused on an LPA-degrading enzyme, lipid phosphate phosphatase 3 (LPP3, also known as PPAP2B), and showed that LPP3 was localized in specific cell–cell contact sites of endothelial cells and suppresses LPA signalling through the LPA6 receptor (also known as LPAR6). In HEK293 cells, overexpression of LPP3 dramatically suppressed activation of LPA6. In human umbilical vein endothelial cells (HUVECs), LPA induced actin stress fibre formation through LPA6, which was substantially upregulated by LPP3 knockdown. LPP3 was localized to cell–cell contact sites and was missing in non-contact sites to which LPA-induced actin stress fibre formation mediated by LPA6 was restricted. Interestingly, the expression of LPP3 in HUVECs was dramatically increased after forskolin treatment in a process involving Notch signalling. These results indicate that LPP3 regulates and localizes LPA signalling in endothelial cells, thereby stabilizing vessels through Notch signalling for proper vasculature. Summary: In endothelial cells, the membrane-bound LPA-degrading enzyme LPP3 is specifically expressed at cell–cell contact sites, thereby localizing the signal evoked by extracellularly produced LPA.


PLOS ONE | 2015

Autotaxin Overexpression Causes Embryonic Lethality and Vascular Defects

Hiroshi Yukiura; Kuniyuki Kano; Ryoji Kise; Asuka Inoue; Junken Aoki

Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study, we generated conditional transgenic (Tg) mice overexpressing ATX and examined the effects of excess LPA signalling. We found that ATX overexpression in the embryonic period caused severe vascular defects and was lethal around E9.5. ATX was conditionally overexpressed in the neonatal period using the Cre/loxP system, which resulted in a marked increase in the plasma LPA level. This resulted in retinal vascular defects including abnormal vascular plexus and increased vascular regression. Our findings indicate that the ATX level must be carefully regulated to ensure coordinated vascular formation


Mass spectrometry | 2014

Simultaneous Quantification of Sphingolipids in Small Quantities of Liver by LC-MS/MS

Michiyo Okudaira; Jiao Wang; Kuniyuki Kano; Makoto Kurano; Baasanjav Uranbileg; Hitoshi Ikeda; Yutaka Yatomi; Hozumi Motohashi; Junken Aoki

Sph, S1P, and Cer, derived from the membrane sphingolipids, act as intracellular and intercellular mediators, involved in various (path) physiological functions. Accordingly, determining the distributions and concentrations of these sphingolipid mediators in body tissues is an important task. Consequently, a method for determination of sphingolipids in small quantities of tissue is required. Sphingolipids analysis has been dependent on improvements in mass spectrometry (MS) technology. Additionally, decomposition of sphingosine-1-phosphate (S1P) in the tissue samples before preparation for MS has hindered analysis. In the present study, a method for stabilization of liver samples before MS preparation was developed using a heat stabilizer (Stabilizor™ T1). Then, a LC-MS/MS method using a triple-quadrupole mass spectrometer with a C8 column was developed for simultaneous determination of sphingolipids in small quantities of liver specimens. This method showed good separation and validation results. Separation was performed with a gradient elution of solvent A (5 mmol L(-1) ammonium formate in water, pH 4.0) and solvent B (5 mmol L(-1) ammonium formate in 95% acetonitrile, pH 4.0) at 300 μL min(-1). The lower limit of quantification was less than 132 pmol L(-1), and this method was accurate (∼13.5%) and precise (∼7.13%) for S1P analysis. The method can be used to show the tissue distribution of sphingolipids.

Collaboration


Dive into the Kuniyuki Kano's collaboration.

Top Co-Authors

Avatar

Junken Aoki

Japan Agency for Medical Research and Development

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge