Kunook Chung
Seoul National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kunook Chung.
Science | 2010
Kunook Chung; Chul Ho Lee; Gyu-Chul Yi
Gallium Nitride Grown on Graphene Nitride semiconductor materials used in light-emitting diodes and lasers are usually grown on single-crystal sapphire substrates with intermediate buffer layers. Instead, Chung et al. (p. 655) used graphene as a substrate for gallium nitride growth and found that nucleation of the gallium nitride layers was enhanced by first depositing zinc oxide, which grew as vertical nanowalls on the graphene. The gallium nitride layers displayed strong photo- and electroluminescence and, even better, the layers could be transferred to flexible substrates such as plastic. Graphene can replace sapphire crystals as the substrate for the growth of gallium nitride layers. We fabricated transferable gallium nitride (GaN) thin films and light-emitting diodes (LEDs) using graphene-layered sheets. Heteroepitaxial nitride thin films were grown on graphene layers by using high-density, vertically aligned zinc oxide nanowalls as an intermediate layer. The nitride thin films on graphene layers show excellent optical characteristics at room temperature, such as stimulated emission. As one of the examples for device applications, LEDs that emit strong electroluminescence emission under room illumination were fabricated. Furthermore, the layered structure of a graphene substrate made it possible to easily transfer GaN thin films and GaN-based LEDs onto foreign substrates such as glass, metal, or plastic.
Nano Letters | 2013
Hyeonjun Baek; Chul Ho Lee; Kunook Chung; Gyu-Chul Yi
Direct epitaxial growth of inorganic compound semiconductors on lattice-matched single-crystal substrates has provided an important way to fabricate light sources for various applications including lighting, displays and optical communications. Nevertheless, unconventional substrates such as silicon, amorphous glass, plastics, and metals must be used for emerging optoelectronic applications, such as high-speed photonic circuitry and flexible displays. However, high-quality film growth requires good matching of lattice constants and thermal expansion coefficients between the film and the supporting substrate. This restricts monolithic fabrication of optoelectronic devices on unconventional substrates. Here, we describe methods to grow high-quality gallium nitride (GaN) microdisks on amorphous silicon oxide layers formed on silicon using micropatterned graphene films as a nucleation layer. Highly crystalline GaN microdisks having hexagonal facets were grown on graphene dots with intermediate ZnO nanowalls via epitaxial lateral overgrowth. Furthermore, whispering-gallery-mode lasing from the GaN microdisk with a Q-factor of 1200 was observed at room temperature.
APL Materials | 2014
Kunook Chung; Hyeonjun Beak; Youngbin Tchoe; Hongseok Oh; Hyobin Yoo; Miyoung Kim; Gyu-Chul Yi
We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO2/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, InxGa1–xN/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.
Advanced Materials | 2012
Hyobin Yoo; Kunook Chung; Yong Seok Choi; Chan Soon Kang; Kyu Hwan Oh; Miyoung Kim; Gyu-Chul Yi
Plan-view and cross-sectional transmission electron microscopy images show the microstructural properties of GaN thin films grown on graphene layers, including dislocation types and density, crystalline orientation and grain boundaries. The roles of ZnO nanowalls and GaN intermediate layers in the heteroepitaxial growth of GaN on graphene, revealed by cross-sectional transmission electron microscopy, are also discussed.
Applied Physics Letters | 2013
Hyobin Yoo; Kunook Chung; Suk In Park; Miyoung Kim; Gyu-Chul Yi
Microstructural defects in GaN thin films grown on graphene produced via chemical vapor deposition have been investigated using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). EBSD analysis reveals the preferred orientations of the GaN films. We further examined the microstructural defects such as grain boundaries and threading dislocations present in the films using TEM. Plan-view TEM analysis showed presence of both high- and low-angle grain boundaries and the threading dislocations mostly bound to those grain boundaries. Moreover, the characteristics and behavior of the threading dislocations were also investigated using cross-section TEM analysis.
Applied Physics Letters | 2014
Hyeonjun Baek; Jerome K. Hyun; Kunook Chung; Hongseok Oh; Gyu-Chul Yi
Lasing from long semiconductor nanorods is dictated by Fabry-Perot (FP) resonances whereas that from large-diameter microrods is determined by whispering gallery modes (WGMs). Lengths and diameters intermediate between the two systems represent an important size regime for photonics and electronics, but have not been studied in detail. Here, we report on the detection of FP and WGM lasing emissions from a single GaN microrod, and demonstrate the ability to switch between the two lasing mechanisms by translating the excitation beam along the microrod. The competition between FP and WGM-type lasing was studied by finite-difference time-domain simulation and statistical analysis by measuring microrods of various diameters. Finally, control over the relative lasing intensities originating from either FPs or WGMs was demonstrated by tuning the polarization of the emission.
Advanced Materials | 2016
Kunook Chung; Hyobin Yoo; Jerome K. Hyun; Hongseok Oh; Youngbin Tchoe; Keundong Lee; Hyeonjun Baek; Miyoung Kim; Gyu-Chul Yi
The epitaxial lateral overgrowth (ELOG) of GaN microdisks on graphene microdots and the fabrication of flexible light-emitting diodes (LEDs) using these microdisks is reported. An ELOG technique with only patterned graphene microdots is used, without any growth mask. The discrete micro-LED arrays are transferred onto Cu foil by a simple lift-off technique, which works reliably under various bending conditions.
ACS Nano | 2016
Youngbin Tchoe; Chul Ho Lee; Jun Beom Park; Hyeonjun Baek; Kunook Chung; Janghyun Jo; Miyoung Kim; Gyu-Chul Yi
We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (In(x)Ga(1-x)N)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally.
Scientific Reports | 2016
Keundong Lee; Youngbin Tchoe; Hosang Yoon; Hyeonjun Baek; Kunook Chung; Sangik Lee; Chansoo Yoon; Bae Ho Park; Gyu-Chul Yi
ReRAM is a compelling candidate for next-generation non-volatile memory owing to its various advantages. However, fluctuation of operation parameters are critical weakness occurring failures in ‘reading’ and ‘writing’ operations. To enhance the stability, it is important to understand the mechanism of the devices. Although numerous studies have been conducted using AFM or TEM, the understanding of the device operation is still limited due to the destructive nature and/or limited imaging range of the previous methods. Here, we propose a new hybrid device composed of ReRAM and LED enabling us to monitor the conducting filament (CF) configuration on the device scale during resistive switching. We directly observe the change in CF configuration across the whole device area through light emission from our hybrid device. In contrast to former studies, we found that minor CFs were formed earlier than major CF contributing to the resistive switching. Moreover, we investigated the substitution of a stressed major CF with a fresh minor CF when large fluctuation of operation voltage appeared after more than 50 times of resistive switching in atmospheric condition. Our results present an advancement in the understanding of ReRAM operation mechanism, and a step toward stabilizing the fluctuations in ReRAM switching parameters.
Nanotechnology | 2017
Keundong Lee; Jong-woo Park; Youngbin Tchoe; Jiyoung Yoon; Kunook Chung; Hosang Yoon; Sangik Lee; Chansoo Yoon; Bae Ho Park; Gyu-Chul Yi
We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.