Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Youngbin Tchoe is active.

Publication


Featured researches published by Youngbin Tchoe.


APL Materials | 2014

Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

Kunook Chung; Hyeonjun Beak; Youngbin Tchoe; Hongseok Oh; Hyobin Yoo; Miyoung Kim; Gyu-Chul Yi

We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO2/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs), were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, InxGa1–xN/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.


Advanced Materials | 2014

Variable‐Color Light‐Emitting Diodes Using GaN Microdonut arrays

Youngbin Tchoe; Janghyun Jo; Miyoung Kim; Jaehyuk Heo; Geon-Wook Yoo; Cheolsoo Sone; Gyu-Chul Yi

Microdonut-shaped GaN/Inx Ga1-x N light-emitting diode (LED) microarrays are fabricated for variable-color emitters. The figure shows clearly donut-shaped light emission from all the individual microdonut LEDs. Furthermore, microdonut LEDs exhibit spatially-resolved blue and green EL colors, which can be tuned by either controlling the external bias voltage or changing the size of the microdonut LED.


Advanced Materials | 2016

Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots

Kunook Chung; Hyobin Yoo; Jerome K. Hyun; Hongseok Oh; Youngbin Tchoe; Keundong Lee; Hyeonjun Baek; Miyoung Kim; Gyu-Chul Yi

The epitaxial lateral overgrowth (ELOG) of GaN microdisks on graphene microdots and the fabrication of flexible light-emitting diodes (LEDs) using these microdisks is reported. An ELOG technique with only patterned graphene microdots is used, without any growth mask. The discrete micro-LED arrays are transferred onto Cu foil by a simple lift-off technique, which works reliably under various bending conditions.


APL Materials | 2015

Growth and optical characteristics of high-quality ZnO thin films on graphene layers

Suk In Park; Youngbin Tchoe; Hyeonjun Baek; Jaehyuk Heo; Jerome K. Hyun; Janghyun Jo; Miyoung Kim; Nam-Jung Kim; Gyu-Chul Yi

We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL) characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm2 at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.


ACS Nano | 2016

Microtube Light-Emitting Diode Arrays with Metal Cores

Youngbin Tchoe; Chul Ho Lee; Jun Beom Park; Hyeonjun Baek; Kunook Chung; Janghyun Jo; Miyoung Kim; Gyu-Chul Yi

We report the fabrication and characteristics of vertical microtube light-emitting diode (LED) arrays with a metal core inside the devices. To make the LEDs, gallium nitride (GaN)/indium gallium nitride (In(x)Ga(1-x)N)/zinc oxide (ZnO) coaxial microtube LED arrays were grown on an n-GaN/c-aluminum oxide (Al2O3) substrate. The microtube LED arrays were then lifted-off the substrate by wet chemical etching of the sacrificial ZnO microtubes and the silicon dioxide (SiO2) layer. The chemically lifted-off LED layer was then transferred upside-down on other supporting substrates. To create the metal cores, titanium/gold and indium tin oxide were deposited on the inner shells of the microtubes, forming n-type electrodes inside the metal-cored LEDs. The characteristics of the resulting devices were determined by measuring electroluminescence and current-voltage characteristic curves. To gain insights into the current-spreading characteristics of the devices and understand how to make them more efficient, we modeled them computationally.


Scientific Reports | 2016

Real-time device-scale imaging of conducting filament dynamics in resistive switching materials.

Keundong Lee; Youngbin Tchoe; Hosang Yoon; Hyeonjun Baek; Kunook Chung; Sangik Lee; Chansoo Yoon; Bae Ho Park; Gyu-Chul Yi

ReRAM is a compelling candidate for next-generation non-volatile memory owing to its various advantages. However, fluctuation of operation parameters are critical weakness occurring failures in ‘reading’ and ‘writing’ operations. To enhance the stability, it is important to understand the mechanism of the devices. Although numerous studies have been conducted using AFM or TEM, the understanding of the device operation is still limited due to the destructive nature and/or limited imaging range of the previous methods. Here, we propose a new hybrid device composed of ReRAM and LED enabling us to monitor the conducting filament (CF) configuration on the device scale during resistive switching. We directly observe the change in CF configuration across the whole device area through light emission from our hybrid device. In contrast to former studies, we found that minor CFs were formed earlier than major CF contributing to the resistive switching. Moreover, we investigated the substitution of a stressed major CF with a fresh minor CF when large fluctuation of operation voltage appeared after more than 50 times of resistive switching in atmospheric condition. Our results present an advancement in the understanding of ReRAM operation mechanism, and a step toward stabilizing the fluctuations in ReRAM switching parameters.


Nanotechnology | 2017

Flexible resistive random access memory devices by using NiO x /GaN microdisk arrays fabricated on graphene films

Keundong Lee; Jong-woo Park; Youngbin Tchoe; Jiyoung Yoon; Kunook Chung; Hosang Yoon; Sangik Lee; Chansoo Yoon; Bae Ho Park; Gyu-Chul Yi

We report flexible resistive random access memory (ReRAM) arrays fabricated by using NiO x /GaN microdisk arrays on graphene films. The ReRAM device was created from discrete GaN microdisk arrays grown on graphene films produced by chemical vapor deposition, followed by deposition of NiO x thin layers and Au metal contacts. The microdisk ReRAM arrays were transferred to flexible plastic substrates by a simple lift-off technique. The electrical and memory characteristics of the ReRAM devices were investigated under bending conditions. Resistive switching characteristics, including cumulative probability, endurance, and retention, were measured. After 1000 bending repetitions, no significant change in the device characteristics was observed. The flexible ReRAM devices, constructed by using only inorganic materials, operated reliably at temperatures as high as 180 °C.


Scientific Reports | 2018

Real-Time Characterization Using in situ RHEED Transmission Mode and TEM for Investigation of the Growth Behaviour of Nanomaterials

Janghyun Jo; Youngbin Tchoe; Gyu-Chul Yi; Miyoung Kim

A novel characterization technique using both in situ reflection high-energy electron diffraction (RHEED) transmission mode and transmission electron microscopy (TEM) has been developed to investigate the growth behaviour of semiconductor nanostructures. RHEED employed in transmission mode enables the acquisition of structural information during the growth of nanostructures such as nanorods. Such real-time observation allows the investigation of growth mechanisms of various nanomaterials that is not possible with conventional ex situ analytical methods. Additionally, real-time monitoring by RHEED transmission mode offers a complete range of information when coupled with TEM, providing structural and chemical information with excellent spatial resolution, leading to a better understanding of the growth behaviour of nanomaterials. Here, as a representative study using the combined technique, the nucleation and crystallization of InAs nanorods and the epitaxial growth of InxGa1−xAs(GaAs) shell layers on InAs nanorods are explored. The structural changes in the InAs nanorods at the early growth stage caused by the transition of the local growth conditions and the strain relaxation processes that occur during epitaxial coating of the shell layers are shown. This technique advances our understanding of the growth behaviour of various nanomaterials, which allows the realization of nanostructures with novel properties and their application in future electronics and optoelectronics.


APL Materials | 2017

ZnO nanotube waveguide arrays on graphene films for local optical excitation on biological cells

Hyeonjun Baek; Hankyul Kwak; Minho S. Song; Go Eun Ha; Jong Woo Park; Youngbin Tchoe; Jerome K. Hyun; Hye Yoon Park; Eunji Cheong; Gyu-Chul Yi

We report on scalable and position-controlled optical nanoprobe arrays using ZnO nanotube waveguides on graphene films for use in local optical excitation. For the waveguide fabrication, position-controlled and well-ordered ZnO nanotube arrays were grown on chemical vapor deposited graphene films with a submicron patterned mask layer and Au prepared between the interspace of nanotubes. Mammalian cells were cultured on the nanotube waveguide arrays and were locally excited by light illuminated through the nanotubes. Fluorescence and optogenetic signals could be excited through the optical nanoprobes. This method offers the ability to investigate cellular behavior with a high spatial resolution that surpasses the current limitation.


Small | 2018

Vertical ZnO Nanotube Transistor on a Graphene Film for Flexible Inorganic Electronics

Hongseok Oh; Jun-Beom Park; Woojin Choi; Heehun Kim; Youngbin Tchoe; Arpana Agrawal; Gyu-Chul Yi

The bottom-up integration of a 1D-2D hybrid semiconductor nanostructure into a vertical field-effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position- and dimension-controlled single crystal ZnO nanotubes vertically on a large graphene film. The graphene film, which acts as the substrate, provides a bottom electrical contact to the nanotubes. Due to the high quality of the single crystal ZnO nanotubes and the unique 1D device structure, the fabricated VFET exhibits excellent electrical characteristics. For example, it has a small subthreshold swing of 110 mV dec-1 , a high Imax /Imin ratio of 106 , and a transconductance of 170 nS µm-1 . The electrical characteristics of the nanotube VFETs are validated using 3D transport simulations. Furthermore, the nanotube VFETs fabricated on graphene films can be easily transferred onto flexible plastic substrates. The resulting components are reliable, exhibit high performance, and do not degrade significantly during testing.

Collaboration


Dive into the Youngbin Tchoe's collaboration.

Top Co-Authors

Avatar

Gyu-Chul Yi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Miyoung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Janghyun Jo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kunook Chung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hongseok Oh

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hyeonjun Baek

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hosang Yoon

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Keundong Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Heehun Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge