Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwangho Nam is active.

Publication


Featured researches published by Kwangho Nam.


Nature | 2009

Encounter and extrusion of an intrahelical lesion by a DNA repair enzyme.

Yan Qi; Marie C. Spong; Kwangho Nam; Anirban Banerjee; Sao Jiralerspong; Martin Karplus; Gregory L. Verdine

How living systems detect the presence of genotoxic damage embedded in a million-fold excess of undamaged DNA is an unresolved question in biology. Here we have captured and structurally elucidated a base-excision DNA repair enzyme, MutM, at the stage of initial encounter with a damaged nucleobase, 8-oxoguanine (oxoG), nested within a DNA duplex. Three structures of intrahelical oxoG-encounter complexes are compared with sequence-matched structures containing a normal G base in place of an oxoG lesion. Although the protein–DNA interfaces in the matched complexes differ by only two atoms—those that distinguish oxoG from G—their pronounced structural differences indicate that MutM can detect a lesion in DNA even at the earliest stages of encounter. All-atom computer simulations show the pathway by which encounter of the enzyme with the lesion causes extrusion from the DNA duplex, and they elucidate the critical free energy difference between oxoG and G along the extrusion pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Unsuspected pathway of the allosteric transition in hemoglobin

Stefan Fischer; Kenneth W. Olsen; Kwangho Nam; Martin Karplus

Large conformational transitions play an essential role in the function of many proteins, but experiments do not provide the atomic details of the path followed in going from one end structure to the other. For the hemoglobin tetramer, the transition path between the unliganded (T) and tetraoxygenated (R) structures is not known, which limits our understanding of the cooperative mechanism in this classic allosteric system, where both tertiary and quaternary changes are involved. The conjugate peak refinement algorithm is used to compute an unbiased minimum energy path at atomic detail between the two end states. Although the results confirm some of the proposals of Perutz [Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–734], the subunit motions do not follow the textbook description of a simple rotation of one αβ-dimer relative to the other. Instead, the path consists of two sequential quaternary rotations, each involving different subdomains and axes. The quaternary transitions are preceded and followed by phases of tertiary structural changes. The results explain the recent photodissociation measurements, which suggest that the quaternary transition has a fast (2 μs) as well as a slow (20 μs) component and provide a testable model for single molecule FRET experiments.


Journal of Biological Chemistry | 2010

Entrapment and Structure of an Extrahelical Guanine Attempting to Enter the Active Site of a Bacterial DNA Glycosylase, MutM

Yan Qi; Marie C. Spong; Kwangho Nam; Martin Karplus; Gregory L. Verdine

MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding the interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.


Journal of Biological Chemistry | 2012

Enforced Presentation of an Extrahelical Guanine to the Lesion Recognition Pocket of Human 8-Oxoguanine Glycosylase, hOGG1

Charisse M. Crenshaw; Kwangho Nam; Kimberly Oo; Peter S. Kutchukian; Brian R. Bowman; Martin Karplus; Gregory L. Verdine

Background: Considerable interest surrounds how 8-oxoguanine DNA glycosylase (hOGG1) distinguishes rare oxoG lesions from undamaged G residues. Results: Even when G is forcibly inserted into the lesion-recognition pocket on the enzyme, it is not cleaved. Conclusion: The hOGG1 active site can discriminate G from oxoG at the stage of catalysis. Significance: HOGG1 has a catalytic checkpoint that prevents accidental cleavage of undamaged DNA. A poorly understood aspect of DNA repair proteins is their ability to identify exceedingly rare sites of damage embedded in a large excess of nearly identical undamaged DNA, while catalyzing repair only at the damaged sites. Progress toward understanding this problem has been made by comparing the structures and biochemical behavior of these enzymes when they are presented with either a target lesion or a corresponding undamaged nucleobase. Trapping and analyzing such DNA-protein complexes is particularly difficult in the case of base extrusion DNA repair proteins because of the complexity of the repair reaction, which involves extrusion of the target base from DNA followed by its insertion into the active site where glycosidic bond cleavage is catalyzed. Here we report the structure of a human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, in which a normal guanine from DNA has been forcibly inserted into the enzyme active site. Although the interactions of the nucleobase with the active site are only subtly different for G versus oxoG, hOGG1 fails to catalyze excision of the normal nucleobase. This study demonstrates that even if hOGG1 mistakenly inserts a normal base into its active site, the enzyme can still reject it on the basis of catalytic incompatibility.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Strandwise translocation of a DNA glycosylase on undamaged DNA

Yan Qi; Kwangho Nam; Marie C. Spong; Anirban Banerjee; Rou-Jia Sung; Michael Zhang; Martin Karplus; Gregory L. Verdine

Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.


Nucleic Acids Research | 2014

The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β

Myong-Chul Koag; Kwangho Nam; Seongmin Lee

To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ.


Journal of Chemical Theory and Computation | 2014

How Accurate Are Transition States from Simulations of Enzymatic Reactions

Dvir Doron; Amnon Kohen; Kwangho Nam; Dan Thomas Major

The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics.


Journal of the American Chemical Society | 2015

Role of Protein Dynamics in Allosteric Control of the Catalytic Phosphoryl Transfer of Insulin Receptor Kinase

Pedro Ojeda-May; Yaozong Li; Victor Ovchinnikov; Kwangho Nam

The catalytic and allosteric mechanisms of insulin receptor kinase (IRK) are investigated by a combination of ab initio and semiempirical quantum mechanical and molecular mechanical (QM/MM) methods and classical molecular dynamics (MD) simulations. The simulations reveal that the catalytic reaction proceeds in two steps, starting with the transfer of a proton from substrate Tyr to the catalytic Asp1132, followed by the phosphoryl transfer from ATP to substrate Tyr. The enhancement of the catalytic rate of IRK upon phosphorylations in the enzymes activation loop is found to occur mainly via changes to the free energy landscape of the proton transfer step, favoring the proton transfer in the fully phosphorylated enzyme. In contrast, the effects of the phosphorylations on the phosphoryl transfer are smaller. Equilibrium MD simulations show that IRK phosphorylations affect the protein dynamics of the enzyme before the proton transfer to Asp1132 with only a minor effect after the proton transfer. This finding is consistent with the large change in the proton transfer free energy and the smaller change in the free energy barrier of phosphoryl transfer found by QM/MM simulations. Taken together, the present results provide details on how IRK phosphorylation exerts allosteric control of the catalytic activity via modifications of protein dynamics and free energy landscape of catalytic reaction. The results also highlight the importance of protein dynamics in connecting protein allostery and catalysis to control catalytic activity of enzymes.


Journal of the American Chemical Society | 2009

Analysis of an Anomalous Mutant of MutM DNA Glycosylase Leads to New Insights into the Catalytic Mechanism

Kwangho Nam; Gregory L. Verdine; Martin Karplus

To determine the factors involved in the specific recognition function of a bacterial 8-oxoguanine (oxoG) DNA glycosylase MutM, a series of potentials of mean force and thermodynamic integration simulations were performed with the wild type and a single-point E3Q mutant of MutM bound to oxoG and G-containing DNA, respectively. Interestingly, the mutation of the catalytically important Glu3 (E3) residue to Gln (Q) significantly changes the free-energy surface so that oxoG can bind stably in the active site of the enzyme. Free-energy simulations with the protonated and deprotonated E3 residue further showed that the protonation of the catalytically important E3 residue plays a key role in distinguishing oxoG versus G in the active site by lowering the free energy of oxoG preferentially in the active site. The results suggest that MutM utilizes the thermodynamic recognition mechanism for stable binding of the lesion base in the active site of the enzyme in addition to kinetic discrimination at the early stage of the base extrusion for facilitated extrusion of oxoG.


Journal of Chemical Theory and Computation | 2014

Acceleration of Ab Initio QM/MM Calculations under Periodic Boundary Conditions by Multiscale and Multiple Time Step Approaches.

Kwangho Nam

Development of multiscale ab initio quantum mechanical and molecular mechanical (AI-QM/MM) method for periodic boundary molecular dynamics (MD) simulations and their acceleration by multiple time step approach are described. The developed method achieves accuracy and efficiency by integrating the AI-QM/MM level of theory and the previously developed semiempirical (SE) QM/MM-Ewald sum method [J. Chem. Theory Comput. 2005, 1, 2] extended to the smooth particle-mesh Ewald (PME) summation method. In the developed methods, the total energy of the simulated system is evaluated at the SE-QM/MM-PME level of theory to include long-range QM/MM electrostatic interactions, which is then corrected on the fly using the AI-QM/MM level of theory within the real space cutoff. The resulting energy expression enables decomposition of total forces applied to each atom into forces determined at the low-level SE-QM/MM method and correction forces at the AI-QM/MM level, to integrate the system using the reversible reference system propagator algorithm. The resulting method achieves a substantial speed-up of the entire calculation by minimizing the number of time-consuming energy and gradient evaluations at the AI-QM/MM level. Test calculations show that the developed multiple time step AI-QM/MM method yields MD trajectories and potential of mean force profiles comparable to single time step QM/MM results. The developed method, together with message passing interface (MPI) parallelization, accelerates the present AI-QM/MM MD simulations about 30-fold relative to the speed of single-core AI-QM/MM simulations for the molecular systems tested in the present work, making the method less than one order slower than the SE-QM/MM methods under periodic boundary conditions.

Collaboration


Dive into the Kwangho Nam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Skyllberg

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge