Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kwanyee Leung is active.

Publication


Featured researches published by Kwanyee Leung.


Journal of Virology | 2004

pH-Dependent Entry of Severe Acute Respiratory Syndrome Coronavirus Is Mediated by the Spike Glycoprotein and Enhanced by Dendritic Cell Transfer through DC-SIGN

Zhi-Yong Yang; Yue Huang; Lakshmanan Ganesh; Kwanyee Leung; Wing-Pui Kong; Owen Schwartz; Kanta Subbarao; Gary J. Nabel

ABSTRACT The severe acute respiratory syndrome coronavirus (SARS-CoV) synthesizes several putative viral envelope proteins, including the spike (S), membrane (M), and small envelope (E) glycoproteins. Although these proteins likely are essential for viral replication, their specific roles in SARS-CoV entry have not been defined. In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis. Further, we define its cellular tropism and demonstrate that virus transmission occurs through cell-mediated transfer by dendritic cells. The S glycoprotein was used successfully to pseudotype replication-defective retroviral and lentiviral vectors that readily infected Vero cells as well as primary pulmonary and renal epithelial cells from human, nonhuman primate, and, to a lesser extent, feline species. The tropism of this reporter virus was similar to that of wild-type, replication-competent SARS-CoV, and binding of purified S to susceptible target cells was demonstrated by flow cytometry. Although myeloid dendritic cells were able to interact with S and to bind virus, these cells could not be infected by SARS-CoV. However, these cells were able to transfer the virus to susceptible target cells through a synapse-like structure. Both cell-mediated infection and direct infection were inhibited by anti-S antisera, indicating that strategies directed toward this gene product are likely to confer a therapeutic benefit for antiviral drugs or the development of a SARS vaccine.


Molecular and Cellular Biology | 1993

Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells.

Hong Bing Shu; Adam B. Agranoff; Elizabeth G. Nabel; Kwanyee Leung; Colin S. Duckett; Andrew S. Neish; Tucker Collins; Gary J. Nabel

Vascular cell adhesion molecule 1 (VCAM-1) is expressed in both endothelial and epithelial cell types, where it contributes to lymphocyte migration to sites of inflammation. Its expression is regulated by cytokines, in part through two kappa B-like regulatory elements. Because NF-kappa B can be composed of multiple alternative subunits with differential effects on gene expression, the role of different specific NF-kappa B family members subunits in VCAM-1 regulation is unknown. In this report, we define the contribution of different NF-kappa B family members to VCAM-1 gene regulation. We show that both kappa B sites in the VCAM-1 enhancer are required to optimally stimulate gene expression, but the enhancer is differentially regulated by specific combinations of NF-kappa B subunits. At low concentrations, RelA(p65) acted in concert with the approximately 50-kDa product of p105 NF-kappa B, NF-kappa B1(p50), to stimulate transcription, and at high concentrations, RelA(p65) alone stimulated the VCAM-1 promoter. In contrast, NF-kappa B2 inhibited functional activation of the VCAM reporter by p65. Consistent with this finding, an additional binding complex was detected by using recombinant NF-kappa B2(p49)/RelA(p65) with radiolabeled VCAM kappa B site probes. Interestingly, the human immunodeficiency virus enhancer responded differently to stimulation by NF-kappa B subunits, with optimal response to p49(100)/p65. Analysis of NF-kappa B mRNA in human umbilical vein endothelial cells revealed that nfkb1, nfkb2, and relA NF-kappa B but not c-rel were induced by tumor necrosis factor alpha and lipopolysaccharide, which also induce VCAM-1. These data suggest that specific subunits of NF-kappa B regulate VCAM-1 and differentially activate other genes in these cells.


Journal of Virology | 2004

Infection of Specific Dendritic Cells by CCR5-Tropic Human Immunodeficiency Virus Type 1 Promotes Cell-Mediated Transmission of Virus Resistant to Broadly Neutralizing Antibodies

Lakshmanan Ganesh; Kwanyee Leung; Karin Loré; Reuven Levin; Amos Panet; Owen Schwartz; Richard A. Koup; Gary J. Nabel

ABSTRACT The tropism of human immunodeficiency virus type 1 for chemokine receptors plays an important role in the transmission of AIDS. Although CXCR4-tropic virus is more cytopathic for T cells, CCR5-tropic strains are transmitted more frequently in humans for reasons that are not understood. Phenotypically immature myeloid dendritic cells (mDCs) are preferentially infected by CCR5-tropic virus, in contrast to mature mDCs, which are not susceptible to infection but instead internalize virus into a protected intracellular compartment and enhance the infection of T cells. Here, we define a mechanism to explain preferential transmission of CCR5-tropic viruses based on their interaction with mDCs and sensitivity to neutralizing antibodies. Infected immature mDCs differentiated normally and were found to enhance CCR5-tropic but not CXCR4-tropic virus infection of T cells even in the continuous presence of neutralizing antibodies. Infectious synapses also formed normally in the presence of such antibodies. Infection of immature mDCs by CCR5-tropic virus can therefore establish a pool of infected cells that can efficiently transfer virus at the same time that they protect virus from antibody neutralization. This property of DCs may enhance infection, contribute to immune evasion, and could provide a selective advantage for CCR5-tropic virus transmission.


Journal of Virology | 2010

Biochemical and Structural Characterization of Cathepsin L-Processed Ebola Virus Glycoprotein: Implications for Viral Entry and Immunogenicity

Chantelle Hood; Jonathan Abraham; Jeffrey C. Boyington; Kwanyee Leung; Peter D. Kwong; Gary J. Nabel

ABSTRACT Ebola virus (EBOV) cellular attachment and entry is initiated by the envelope glycoprotein (GP) on the virion surface. Entry of this virus is pH dependent and associated with the cleavage of GP by proteases, including cathepsin L (CatL) and/or CatB, in the endosome or cell membrane. Here, we characterize the product of CatL cleavage of Zaire EBOV GP (ZEBOV-GP) and evaluate its relevance to entry. A stabilized recombinant form of the EBOV GP trimer was generated using a trimerization domain linked to a cleavable histidine tag. This trimer was purified to homogeneity and cleaved with CatL. Characterization of the trimeric product by N-terminal sequencing and mass spectrometry revealed three cleavage fragments, with masses of 23, 19, and 4 kDa. Structure-assisted modeling of the cathepsin L-cleaved ZEBOV-GP revealed that cleavage removes a glycosylated glycan cap and mucin-like domain (MUC domain) and exposes the conserved core residues implicated in receptor binding. The CatL-cleaved ZEBOV-GP intermediate bound with high affinity to a neutralizing antibody, KZ52, and also elicited neutralizing antibodies, supporting the notion that the processed intermediate is required for viral entry. Together, these data suggest that CatL cleavage of EBOV GP exposes its receptor-binding domain, thereby facilitating access to a putative cellular receptor in steps that lead to membrane fusion.


Journal of Virology | 2004

Selective Modification of Variable Loops Alters Tropism and Enhances Immunogenicity of Human Immunodeficiency Virus Type 1 Envelope

Zhi-Yong Yang; Bimal K. Chakrabarti; Ling Xu; Brent Welcher; Wing-Pui Kong; Kwanyee Leung; Amos Panet; John R. Mascola; Gary J. Nabel

ABSTRACT Although the B clade of human immunodeficiency virus type 1 (HIV-1) envelopes (Env) includes five highly variable regions, each of these domains contains a subset of sequences that remain conserved. The V3 loop has been much studied for its ability to elicit neutralizing antibodies, which are often restricted to a limited number of closely related strains, likely because a large number of antigenic structures are generated from the diverse amino acid sequences in this region. Despite these strain-specific determinants, subregions of V3 are highly conserved, and the effects of different portions of the V3 loop on Env tropism and immunogenicity have not been well delineated. For this report, selective deletions in V3 were introduced by shortening of the stem of the V3 loop. These mutations were explored in combination with deletions of selected V regions. Progressive shortening of the stem of V3 abolished the immunogenicity as well as the functional activity of HIV Env; however, two small deletions on both arms of the V3 stem altered the tropism of the dualtropic 89.6P viral strain so that it infected only CXCR4+ cells. When this smaller deletion was combined with removal of the V1 and V2 loops and used as an immunogen in guinea pigs, the antisera were able to neutralize multiple independent clade B isolates with a higher potency. These findings suggest that highly conserved subregions within V3 may be relevant targets for eliciting neutralizing antibody responses, affecting HIV tropism, and increasing the immunogenicity of AIDS vaccines.


Nature Medicine | 2016

Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination

Jiwon Lee; Daniel R. Boutz; Veronika Chromikova; M. Gordon Joyce; Christopher Vollmers; Kwanyee Leung; Andrew P. Horton; Brandon J. DeKosky; Chang-Han Lee; Jason J. Lavinder; Ellen M. Murrin; Constantine Chrysostomou; Kam Hon Hoi; Yaroslav Tsybovsky; Paul V. Thomas; Aliaksandr Druz; Baoshan Zhang; Yi Zhang; Lingshu Wang; Wing-Pui Kong; Daechan Park; Lyubov Popova; Cornelia L. Dekker; Mark M. Davis; Chalise E. Carter; Ted M. Ross; Andrew D. Ellington; Patrick C. Wilson; Edward M. Marcotte; John R. Mascola

Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ∼60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine.


Nature Communications | 2015

Evaluation of candidate vaccine approaches for MERS-CoV

Lingshu Wang; Wei Shi; M. Gordon Joyce; Kayvon Modjarrad; Yi Zhang; Kwanyee Leung; Christopher R. Lees; Tongqing Zhou; Hadi M. Yassine; Masaru Kanekiyo; Zhi Yong Yang; Xuejun Chen; Michelle M. Becker; Megan Culler Freeman; Leatrice Vogel; Joshua C. Johnson; Gene G. Olinger; John Paul Todd; Ulas Bagci; Jeffrey Solomon; Daniel J. Mollura; Lisa E. Hensley; Peter B. Jahrling; Mark R. Denison; Srinivas S. Rao; Kanta Subbarao; Peter D. Kwong; John R. Mascola; Wing Pui Kong; Barney S. Graham

The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development. Supplementary information The online version of this article (doi:10.1038/ncomms8712) contains supplementary material, which is available to authorized users.


Cell | 2016

Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses.

M. Gordon Joyce; Adam K. Wheatley; Paul V. Thomas; Gwo-Yu Chuang; Cinque Soto; Robert T. Bailer; Aliaksandr Druz; Ivelin S. Georgiev; Rebecca A. Gillespie; Masaru Kanekiyo; Wing-Pui Kong; Kwanyee Leung; Sandeep N. Narpala; Madhu Prabhakaran; Eun Sung Yang; Baoshan Zhang; Yi Zhang; Mangaiarkarasi Asokan; Jeffrey C. Boyington; Tatsiana Bylund; Sam Darko; Christopher R. Lees; Amy Ransier; Chen-Hsiang Shen; Lingshu Wang; James R. R. Whittle; Xueling Wu; Hadi M. Yassine; Celia Santos; Yumiko Matsuoka

Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.


Journal of Experimental Medicine | 2007

Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells

Alvin L. Smith; Lakshmanan Ganesh; Kwanyee Leung; Jenny Jongstra-Bilen; Jan Jongstra; Gary J. Nabel

Dendritic cells (DCs) capture and internalize human immunodeficiency virus (HIV)-1 through C-type lectins, including DC-SIGN. These cells mediate efficient infection of T cells by concentrating the delivery of virus through the infectious synapse, a process dependent on the cytoplasmic domain of DC-SIGN. Here, we identify a cellular protein that binds specifically to the cytoplasmic region of DC-SIGN and directs internalized virus to the proteasome. This cellular protein, leukocyte-specific protein 1 (LSP1), was defined biochemically by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. LSP1 is an F-actin binding protein involved in leukocyte motility and found on the cytoplasmic surface of the plasma membrane. LSP1 interacted specifically with DC-SIGN and other C-type lectins, but not the inactive mutant DC-SIGNΔ35, which lacks a cytoplasmic domain and shows altered virus transport in DCs. LSP1 diverts HIV-1 to the proteasome. Down-regulation of LSP1 with specific small interfering RNAs in human DCs enhanced HIV-1 transfer to T cells, and bone marrow DCs from lsp1−/− mice also showed an increase in transfer of HIV-1BaL to a human T cell line. Proteasome inhibitors increased retention of viral proteins in lsp1+/+ DCs, and substantial colocalization of virus to the proteasome was observed in wild-type compared with LSP1-deficient cells. Collectively, these data suggest that LSP1 protein facilitates virus transport into the proteasome after its interaction with DC-SIGN through its interaction with cytoskeletal proteins.


Research in Virology | 1991

Induction of NF-χB during monocyte differentiation is associated with activation of HIV-gene expression

George E. Griffin; Kwanyee Leung; Thomas M. Folks; Steven L. Kunkel; Gary J. Nabel

Cells of the monocyte-macrophage lineage are important targets of HIV infection. We report here that the phenotypic differentiation of monocyte cell lines induced by phorbol esters or tumour necrosis factor alpha (TNF alpha) is associated with expression of nuclear factor kappa B (NF-kappa B). In parallel with such differentiation, HIV transcription, monitored using an HIV long terminal repeat reporter gene construct, is activated in such cells under the influence of enhanced NF-kappa B expression. Also, in a promonocyte cell line chronically infected with HIV, NF-kappa B expression and HIV transcription were enhanced on stimulation with phorbol ester or TNF alpha. Thus, stimulation of monocyte cell lines by phorbol esters or TNF alpha induces cell differentiation and activates HIV transcription. Such a process may have fundamental implications in AIDS pathogenesis in vivo and may be important in disease progression induced by opportunistic infections directly or indirectly involving macrophages.

Collaboration


Dive into the Kwanyee Leung's collaboration.

Top Co-Authors

Avatar

Gary J. Nabel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wing-Pui Kong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

M. Gordon Joyce

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masaru Kanekiyo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Eun Sung Yang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hadi M. Yassine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jeffrey C. Boyington

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge