Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kyoko Sugawara is active.

Publication


Featured researches published by Kyoko Sugawara.


The Plant Cell | 2012

Lectin-Mediated Resistance Impairs Plant Virus Infection at the Cellular Level

Yasuyuki Yamaji; Kensaku Maejima; Ken Komatsu; Takuya Shiraishi; Yukari Okano; Misako Himeno; Kyoko Sugawara; Yutaro Neriya; Nami Minato; Chihiro Miura; Masayoshi Hashimoto; Shigetou Namba

This work identifies jacalin-type lectin that is responsible for resistance to multiple plant viruses belonging to the genus Potexvirus. The isolation and characterization of this lectin sheds light on a novel resistance machinery to plant viruses. Plants possess a multilayered defense response, known as plant innate immunity, to infection by a wide variety of pathogens. Lectins, sugar binding proteins, play essential roles in the innate immunity of animal cells, but the role of lectins in plant defense is not clear. This study analyzed the resistance of certain Arabidopsis thaliana ecotypes to a potexvirus, plantago asiatica mosaic virus (PlAMV). Map-based positional cloning revealed that the lectin gene JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1) is responsible for the resistance. JAX1-mediated resistance did not show the properties of conventional resistance (R) protein–mediated resistance and was independent of plant defense hormone signaling. Heterologous expression of JAX1 in Nicotiana benthamiana showed that JAX1 interferes with infection by other tested potexviruses but not with plant viruses from different genera, indicating the broad but specific resistance to potexviruses conferred by JAX1. In contrast with the lectin gene RESTRICTED TEV MOVEMENT1, which inhibits the systemic movement of potyviruses, which are distantly related to potexviruses, JAX1 impairs the accumulation of PlAMV RNA at the cellular level. The existence of lectin genes that show a variety of levels of virus resistance, their targets, and their properties, which are distinct from those of known R genes, suggests the generality of lectin-mediated resistance in plant innate immunity.


PLOS ONE | 2011

Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

Kenro Oshima; Yoshiko Ishii; Shigeyuki Kakizawa; Kyoko Sugawara; Yutaro Neriya; Misako Himeno; Nami Minato; Chihiro Miura; Takuya Shiraishi; Yasuyuki Yamaji; Shigetou Namba

Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls.


Plant Journal | 2011

Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner.

Misako Himeno; Yutaro Neriya; Nami Minato; Chihiro Miura; Kyoko Sugawara; Yoshiko Ishii; Yasuyuki Yamaji; Shigeyuki Kakizawa; Kenro Oshima; Shigetou Namba

Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes.


Molecular Plant-microbe Interactions | 2011

A Necrosis-Inducing Elicitor Domain Encoded by Both Symptomatic and Asymptomatic Plantago asiatica mosaic virus Isolates, Whose Expression Is Modulated by Virus Replication

Ken Komatsu; Masayoshi Hashimoto; Kensaku Maejima; Takuya Shiraishi; Yutaro Neriya; Chihiro Miura; Nami Minato; Yukari Okano; Kyoko Sugawara; Yasuyuki Yamaji; Shigetou Namba

Systemic necrosis is the most destructive symptom induced by plant pathogens. We previously identified amino acid 1154, in the polymerase domain (POL) of RNA-dependent RNA polymerase (RdRp) of Plantago asiatica mosaic virus (PlAMV), which affects PlAMV-induced systemic necrosis in Nicotiana benthamiana. By point-mutation analysis, we show that amino acid 1,154 alone is not sufficient for induction of necrotic symptoms. However, PlAMV replicons that can express only RdRp, derived from a necrosis-inducing PlAMV isolate, retain their ability to induce necrosis, and transient expression of PlAMV-encoded proteins indicated that the necrosis-eliciting activity resides in RdRp. Moreover, inducible-overexpression analysis demonstrated that the necrosis was induced in an RdRp dose-dependent manner. In addition, during PlAMV infection, necrotic symptoms are associated with high levels of RdRp accumulation. Surprisingly, necrosis-eliciting activity resides in the helicase domain (HEL), not in the amino acid 1,154-containing POL, of RdRp, and this activity was observed even in HELs of PlAMV isolates of which infection does not cause necrosis. Moreover, HEL-induced necrosis had characteristics similar to those induced by PlAMV infection. Overall, our data suggest that necrotic symptoms induced by PlAMV infection depend on the accumulation of a non-isolate specific elicitor HEL (even from nonnecrosis isolates), whose expression is indirectly regulated by amino acid 1,154 that controls replication.


Plant Physiology | 2013

The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU

Kyoko Sugawara; Youhei Honma; Ken Komatsu; Misako Himeno; Kenro Oshima; Shigetou Namba

A bacterial peptide effector undergoes proteolytic processing in plants and releases small peptides that alter plant morphology. Phytoplasmas are insect-borne plant pathogenic bacteria that alter host morphology. TENGU, a small peptide of 38 residues, is a virulence factor secreted by phytoplasmas that induces dwarfism and witches’ broom in the host plant. In this study, we demonstrate that plants process TENGU in order to generate small functional peptides. First, virus vector-mediated transient expression demonstrated that the amino-terminal 11 amino acids of TENGU are capable of causing symptom development in Nicotiana benthamiana plants. The deletion of the 11th residue significantly diminished the symptom-inducing activity of TENGU, suggesting that these 11 amino acids constitute a functional domain. Second, we found that TENGU undergoes proteolytic processing in vitro, generating peptides of 19 and 21 residues including the functional domain. Third, we observed similar processing of TENGU in planta, and an alanine substitution mutant of TENGU, for which processing was compromised, showed reduced symptom induction activity. All TENGU homologs from several phytoplasma strains possessed similar symptom induction activity and went through processing, which suggests that the processing of TENGU might be related to its function.


Journal of General Plant Pathology | 2012

Rapid and reliable detection of phytoplasma by loop-mediated isothermal amplification targeting a housekeeping gene

Kyoko Sugawara; Misako Himeno; Takuya Keima; Yugo Kitazawa; Kensaku Maejima; Kenro Oshima; Shigetou Namba

Phytoplasmas are plant pathogenic bacteria that infect more than 700 plant species. Because phytoplasma-resistant cultivars are not available for the vast majority of crops, the most common practice to prevent phytoplasma diseases is to remove infected plants. Therefore, developing a rapid, accurate diagnostic method to detect a phytoplasma infection is important. Here, we developed a phytoplasma detection assay based on loop-mediated isothermal amplification (LAMP) by targeting the groEL gene and 16S rDNA. We designed 19 primer sets for the LAMP assay and evaluated their amplification efficiency, sensitivity, and spectra to select the most suitable primer sets to detect Candidatus Phytoplasma asteris. As a result, DNA was efficiently amplified by one of the primer sets targeting the groEL gene, and LAMP assay sensitivity with this primer set was 10-fold higher than that of the polymerase chain reaction. Moreover, the groEL gene was successfully amplified from several strains of Ca. Phytoplasma asteris by this primer set, indicating that the groEL gene can be used as a LAMP assay target gene for a broad range of phytoplasma strains. Additionally, a simple DNA extraction method that omits the homogenizing and phenol extraction steps was combined with the LAMP assay to develop a simple, rapid, and convenient diagnostic method for detecting phytoplasma.


Fems Microbiology Letters | 2011

Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch‐inducing phytoplasma (PoiBI)

Yutaro Neriya; Kyoko Sugawara; Kensaku Maejima; Masayoshi Hashimoto; Ken Komatsu; Nami Minato; Chihiro Miura; Shigeyuki Kakizawa; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Poinsettia branch-inducing phytoplasma (PoiBI) is a phytopathogenic bacterium that infects poinsettia, and is associated with the free-branching morphotype (characterized by many axillary shoots and flowers) of many commercially grown poinsettias. The major membrane proteins of phytoplasmas are classified into three general types, that is, immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). These membrane proteins are often used as targets for the production of antibodies used in phytoplasma detection. Herein, we cloned and sequenced the imp and idpA genes of PoiBI strains from 26 commercial poinsettia cultivars. Although the amino acid sequences of the encoded IdpA proteins were invariant, those of the encoded Imp varied among the PoiBI isolates, with no synonymous nucleotide substitution. Western blotting and immunohistochemical analyses revealed that the amount of Imp expressed exceeded that of IdpA, in contrast to the case of a related phytoplasma-disease, western X-disease, for which the major membrane protein appears to be IdpA, not Imp. These results suggest that even phylogenetically close phytoplasmas express different types of major membrane proteins.


PLOS ONE | 2011

New Detection Systems of Bacteria Using Highly Selective Media Designed by SMART: Selective Medium-Design Algorithm Restricted by Two Constraints

Takeshi Kawanishi; Takuya Shiraishi; Yukari Okano; Kyoko Sugawara; Masayoshi Hashimoto; Kensaku Maejima; Ken Komatsu; Shigeyuki Kakizawa; Yasuyuki Yamaji; Hiroshi Hamamoto; Kenro Oshima; Shigetou Namba

Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.


Molecular Plant-microbe Interactions | 2013

A replicase of Potato virus X acts as the resistance-breaking determinant for JAX1-mediated resistance.

Kyoko Sugawara; Takuya Shiraishi; Tetsuya Yoshida; Naoko Fujita; Osamu Netsu; Yasuyuki Yamaji; Shigetou Namba

Lectin-mediated resistance (LMR) has been suggested to comprise an uncharacterized branch of antiviral plant innate immunity. To unveil the feature of resistance conferred by jacalin-type lectin required for potexvirus resistance 1 (JAX1), a recently isolated LMR gene against potexviruses, we analyzed the resistance-breaking variants to find the viral component involved in resistance. We employed grafting-mediated inoculation, a high-pressure virus inoculation method, to obtain Potato virus X (PVX) variants that can overcome JAX1-mediated resistance. Whole-genome sequencing of the variants suggested that a single amino acid in the methyl transferase domain of the replicase encoded by PVX is responsible for this resistance-breaking property. Reintroduction of the amino-acid substitution to avirulent wild-type PVX was sufficient to overcome the JAX1-mediated resistance. These results suggest that viral replicase is involved in JAX1-mediated resistance. The residue that determines the resistance-breaking properties was highly conserved among potexviruses, suggesting a general role of the residue in potexvirus-JAX1 interactions.


Gene | 2012

Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma.

Chihiro Miura; Kyoko Sugawara; Yutaro Neriya; Nami Minato; Takuya Keima; Misako Himeno; Kensaku Maejima; Ken Komatsu; Yasuyuki Yamaji; Kenro Oshima; Shigetou Namba

Collaboration


Dive into the Kyoko Sugawara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge