Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. Jocou is active.

Publication


Featured researches published by L. Jocou.


Astronomy and Astrophysics | 2011

PIONIER: a 4-telescope visitor instrument at VLTI

J.-B. Le Bouquin; J. Berger; B. Lazareff; G. Zins; P. Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; Pierre Bourget; A. Delboulbé; Philippe Feautrier; M. Germain; Philippe B. Gitton; D. Gillier; M. Kiekebusch; J. Kluska; Jens Knudstrup; Pierre Labeye; J.-L. Lizon; Jean-Louis Monin; Y. Magnard; F. Malbet; D. Maurel; Francois Menard

PIONIER stands for Precision Integrated-Optics Near-infrared Imaging ExpeRiment. It combines four 1.8m Auxilliary Telescopes or four 8m Unit Telescopes of the Very Large Telescope Interferometer (ESO, Chile) using an integrated optics combiner. The instrument has been integrated at IPAG starting in December 2009 and commissioned at the Paranal Observatory in October 2010. It provides scientific observations since November 2010. In this paper, we detail the instrumental concept, we describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries deltaSco and HIP11231. PIONIER provides 6 visibilities and 3 independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R=40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag=7 in dispersed mode under median atmospheric conditions (seeing 3ms) with the 1.8m Auxiliary Telescopes. We demonstrate a precision of 0.5deg on the closure phases. The precision on the calibrated visibilities ranges from 3 to 15% depending on the atmospheric conditions. PIONIER has been installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8m Unit Telescopes in March 2011 demonstrates that VLTI is ready for 4-telescope operation.


Proceedings of SPIE | 2008

GRAVITY: getting to the event horizon of Sgr A*

F. Eisenhauer; G. Perrin; Wolfgang Brandner; C. Straubmeier; A. Richichi; S. Gillessen; J.-P. Berger; Stefan Hippler; A. Eckart; M. Schöller; S. Rabien; F. Cassaing; Rainer Lenzen; M. Thiel; Y. Clénet; J. Ramos; S. Kellner; Pierre Fedou; Harald Baumeister; R. Hofmann; Eric Gendron; Armin Boehm; H. Bartko; X. Haubois; R. Klein; K. Dodds-Eden; K. Houairi; Felix Hormuth; A. Gräter; L. Jocou

We present the second-generation VLTI instrument GRAVITY, which currently is in the preliminary design phase. GRAVITY is specifically designed to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We have identified the key design features needed to achieve this goal and present the resulting instrument concept. It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near infrared wavefront sensing adaptive optics; fringe tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that the planned design matches the scientific needs; in particular that 10µas astrometry is feasible for a source with a magnitude of K=15 like Sgr A*, given the availability of suitable phase reference sources.


Astronomy and Astrophysics | 2011

Searching for faint companions with VLTI/PIONIER. I. Method and first results

Olivier Absil; J.-B. Le Bouquin; Jean-Philippe Berger; Anne-Marie Lagrange; G. Chauvin; B. Lazareff; G. Zins; Pierre Haguenauer; L. Jocou; P. Kern; R. Millan-Gabet; S. Rochat; Wesley A. Traub

Context. A new four-telescope interferometric instrument called PIONIER has recently been installed at VLTI. It provides improved imaging capabilities together with high precision. Aims. We search for low-mass companions around a few bright stars using different strategies, and determine the dynamic range currently reachable with PIONIER. Methods. Our method is based on the closure phase, which is the most robust interferometric quantity when searching for faint companions. We computed the χ^2 goodness of fit for a series of binary star models at different positions and with various flux ratios. The resulting χ^2 cube was used to identify the best-fit binary model and evaluate its significance, or to determine upper limits on the companion flux in case of non-detections. Results. No companion is found around Fomalhaut, tau Cet and Regulus. The median upper limits at 3σ on the companion flux ratio are respectively of 2.3 × 10^(-3) (in 4 h), 3.5 × 10^(-3) (in 3 h) and 5.4 × 10^(-3) (in 1.5 h) on the search region extending from 5 to 100 mas. Our observations confirm that the previously detected near-infrared excess emissions around Fomalhaut and tau Cet are not related to a low-mass companion, and instead come from an extended source such as an exozodiacal disk. In the case of del Aqr, in 30 min of observation, we obtain the first direct detection of a previously known companion, at an angular distance of about 40 mas and with a flux ratio of 2.05 × 10^(-2) ± 0.16 × 10^(-2). Due to the limited u,v plane coverage, its position can, however, not be unambiguously determined. Conclusions. After only a few months of operation, PIONIER has already achieved one of the best dynamic ranges world-wide for multi-aperture interferometers. A dynamic range up to about 1:500 is demonstrated on unresolved targets, but significant improvements are still required to reach the ultimate goal of directly detecting hot giant extrasolar planets.


Proceedings of SPIE | 2010

GRAVITY: a four-telescope beam combiner instrument for the VLTI

S. Gillessen; F. Eisenhauer; G. Perrin; Wolfgang Brandner; C. Straubmeier; K. Perraut; A. Amorim; M. Schöller; Constanza Araujo-Hauck; H. Bartko; Harald Baumeister; Jean-Philippe Berger; Pedro Carvas; F. Cassaing; F. Chapron; E. Choquet; Y. Clénet; C. Collin; A. Eckart; Pierre Fedou; Sebastian Fischer; Eric Gendron; R. Genzel; Philippe B. Gitton; F. Gonte; A. Gräter; P. Haguenauer; M. Haug; X. Haubois; T. Henning

GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 μas astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.


Astronomy and Astrophysics | 2017

Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI

B. Lazareff; J.-P. Berger; J. Kluska; J.-B. Le Bouquin; M. Benisty; Fabien Malbet; Chris Koen; Christophe Pinte; Wing-Fai Thi; Olivier Absil; Fabien Baron; A. Delboulbé; Gilles Duvert; Andrea Isella; L. Jocou; A. Juhász; Stefan Kraus; R. Lachaume; Francois Menard; R. Millan-Gabet; John D. Monnier; T. Moulin; K. Perraut; S. Rochat; Ferréol Soulez; Michel Tallon; Éric Thiébaut; Wesley A. Traub; G. Zins

Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order 1 au, and the properties of the dust grains. Methods. The program objects (51 in total) were observed with the H-band (1.6 μm) PIONIER/VLTI interferometer. The largest baselines allowed us to resolve (at least partially) structures of a few tenths of an au at typical distances of a few hundred parsecs. Dedicated UBVRIJHK photometric measurements were also obtained. Spectral and 2D geometrical parameters are extracted via fits of a few simple models: ellipsoids and broadened rings with azimuthal modulation. Model bias is mitigated by parallel fits of physical disk models. Sample statistics were evaluated against similar statistics for the physical disk models to infer properties of the sample objects as a group. Results. We find that dust at the inner rim of the disk has a sublimation temperature T_(sub) ≈ 1800 K. A ring morphology is confirmed for approximately half the resolved objects; these rings are wide δr/r ≥ 0.5. A wide ring favors a rim that, on the star-facing side, looks more like a knife edge than a doughnut. The data are also compatible with the combination of a narrow ring and an inner disk of unspecified nature inside the dust sublimation radius. The disk inner part has a thickness z/r ≈ 0.2, flaring to z/r ≈ 0.5 in the outer part. We confirm the known luminosity-radius relation; a simple physical model is consistent with both the mean luminosity-radius relation and the ring relative width; however, a significant spread around the mean relation is present. In some of the objects we find a halo component, fully resolved at the shortest interferometer spacing, that is related to the HAeBe class.


arXiv: Astrophysics | 2002

The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR

F. Hammer; Frédéric Sayède; Eric Gendron; Thierry Fusco; D. Burgarella; Veronique Cayatte; Jean-Marc Conan; F. Courbin; H. Flores; Isabelle Guinouard; L. Jocou; Ariane Lançon; Guy J. Monnet; Mustapha Mouhcine; Francois Rigaud; D. Rouan; Gerard Rousset; V. Buat; Frederic Zamkotsian

A large fraction of the present-day stellar mass was formed between z = 0.5 and z ~ 3 and our understanding of the formation mechanisms at work at these epochs requires both high spatial and high spectral resolution: one shall simultaneously obtain images of objects with typical sizes as small as 1–2 kpc (~ 0″.1), while achieving 20–50 km/s (R≥ 5000) spectral resolution. In addition, the redshift range to be considered implies that most important spectral features are redshifted in the near-infrared. The obvious instrumental solution to adopt in order to tackle the science goal is therefore a combination of multi-object 3D spectrograph with multi-conjugate adaptive optics in large fields. A very promising way to achieve such a technically challenging goal is to relax the conditions of the traditional full adaptive optics correction. A partial, but still competitive correction shall be prefered, over a much wider field of view. This can be done by estimating the turbulent volume from sets of natural guide stars, by optimizing the correction to several and discrete small areas of few arcsec 2 selected in a large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and eventually, up to the 60th Zernike modes. Simulations on real extragalactic fields, show that for most sources (> 80%), the recovered resolution could reach 0″. 15–0″.25 in the J and H bands. Detection of point-like objects is improved by factors from 3 to ≥10, when compared with an instrument without adaptive correction. The proposed instrument concept, FALCON, is equipped with deployable mini-integral field units (IFUs), achieving spectral resolutions between R=5000 and 20000. Its multiplex capability, combined with high spatial and spectral resolution characteristics, is a natural ground based complement to the next generation of space telescopes. Galaxy formation in the early Universe is certainly a main science driver. We describe here how FALCON shall allow to answer puzzling questions in this area, although the science cases naturally accessible to the instrument concept makes it of interest for most areas of astrophysics.


Optical Engineering | 2014

Electro-optic fringe locking and photometric tuning using a two-stage Mach–Zehnder lithium niobate waveguide for high-contrast mid-infrared interferometry

G. Martin; S. Heidmann; Jean-Yves Rauch; L. Jocou; Nadège Courjal

Abstract. We present an optimization process to improve the rejection ratio in integrated beam combiners by locking the dark fringe and then monitoring its intensity. The method proposed here uses the electro-optic effect of lithium niobate in order to lock the dark fringe and to real-time balance the photometric flux by means of a two-stage Mach–Zehnder interferometer waveguide. By applying a control voltage on the output Y-junction, we are able to lock the phase and stay in the dark fringe, while an independent second voltage is applied on the first-stage intensity modulator, to finely balance the photometries. We have obtained a rejection ratio of 4600 (36.6 dB) at 3.39 μm in transverse electric polarization, corresponding to 99.98% fringe contrast, and shown that the system can compensate external phase perturbations (a piston variation of 100 nm) up to around 1 kHz. We also show the preliminary results of this process on wide-band modulation, where a contrast of 38% in 3.25- to 3.65-μm spectral range is obtained. These preliminary results on wide-band need to be optimized, in particular, for reducing scattered light of the device at the Y-junction. We expect this active method to be useful in high-contrast interferometry, in particular, for astronomical spatial projects actually under study.


Proceedings of SPIE | 2008

Characterization of integrated optics components for the second generation of VLTI instruments

Sylvestre Lacour; L. Jocou; T. Moulin; Pierre Labeye; M. Benisty; J. Berger; A. Delboulbé; Xavier Haubois; Emilie Herwats; P. Kern; Fabien Malbet; Karine Rousselet-Perraut; G. Perrin

Two of the three instruments proposed to ESO for the second generation instrumentation of the VLTI would use integrated optics for beam combination. Several design are studied, including co-axial and multi-axial recombination. An extensive quantity of combiners are therefore under test in our laboratories. We will present the various components, and the method used to validate and compare the different combiners. Finally, we will discuss the performances and their implication for both VSI and Gravity VLTI instruments.


Proceedings of SPIE | 2014

Lithium Niobate active beam combiners: results of on-chip fringe locking, fringe scanning and high contrast integrated optics interferometry and spectrometry

G. Martin; S. Heidmann; Fabrice Thomas; Mikhaël de Mengin; L. Jocou; G. Ulliac; Nadège Courjal; Alain Morand; Pierre Benech; Etienne Le Coarer

The context of this work is the development of integrated optic beam combiners devoted to high contrast interferometry, in particular for exoplanet spectral characterization and future spatial missions, where the use of compact and light optical beam combiners ensures robustness and stability of the interferometric signal. Thus, the development of materials allowing light confinement in both polarizations, together with a good transparency from the visible to the mid-IR and able to achieve electro-optic modulation, in order to finely tune the relative phase of the interacting fields, is knowing a rapid development. Lithium Niobate is an electro-optical material allowing index, and thus optical phase modification, by application of an external electric field. It is also well known for waveguide realization in the visible, near and midinfrared. Here we present results on near and mid-infrared beam combiners achieving different optical functions: a) three telescope AC beam combiner, devoted to phase closure studies; b) Phase locking and fringe scanning using double Mach-Zehnder concept. Optimization of the fringe contrast by real time on-chip phase and photometry balance and c) High Resolution Spectrometers in channel waveguides.


Proceedings of SPIE | 2010

PIONIER: a visitor instrument for VLTI

Jean-Philippe Berger; G. Zins; B. Lazareff; J. B. Lebouquin; L. Jocou; P. Kern; R. Millan-Gabet; Wesley A. Traub; P. Haguenauer; Olivier Absil; J.-C. Augereau; M. Benisty; N. Blind; Xavier Bonfils; A. Delboulbé; Philippe Feautrier; M. Germain; D. Gillier; Philippe B. Gitton; M. Kiekebusch; Jens Knudstrup; J.-L. Lizon; Y. Magnard; Fabien Malbet; D. Maurel; Francois Menard; M. Micallef; L. Michaud; S. Morel; T. Moulin

PIONIER is a 4-telescope visitor instrument for the VLTI, planned to see its first fringes in 2010. It combines four ATs or four UTs using a pairwise ABCD integrated optics combiner that can also be used in scanning mode. It provides low spectral resolution in H and K band. PIONIER is designed for imaging with a specific emphasis on fast fringe recording to allow closure-phases and visibilities to be precisely measured. In this work we provide the detailed description of the instrument and present its updated status.

Collaboration


Dive into the L. Jocou's collaboration.

Top Co-Authors

Avatar

P. Kern

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Berger

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Perraut

University of Grenoble

View shared research outputs
Top Co-Authors

Avatar

M. Benisty

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

T. Moulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Delboulbé

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Labeye

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

J. Berger

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge