L. Vikingsson
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L. Vikingsson.
Journal of The Mechanical Behavior of Biomedical Materials | 2015
L. Vikingsson; B. Claessens; José A. Gómez-Tejedor; G. Gallego Ferrer; J.L. Gómez Ribelles
In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior.
Journal of The Mechanical Behavior of Biomedical Materials | 2013
J. A. Panadero; L. Vikingsson; J.L. Gómez Ribelles; Vitor Sencadas; S. Lanceros-Méndez
Tissue engineering applications rely on scaffolds that during its service life, either for in-vivo or in vitro applications, are under loading. The variation of the mechanical condition of the scaffold is strongly relevant for cell culture and has scarcely been addressed. The fatigue life cycle of poly-ε-caprolactone, PCL, scaffolds with and without fibrin as filler of the pore structure were characterized both dry and immersed in liquid water. It is observed that the there is a strong increase from 100 to 500 in the number of loading cycles before collapse in the samples tested in immersed conditions due to the more uniform stress distributions within the samples, the fibrin loading playing a minor role in the mechanical performance of the scaffolds.
Journal of Biomedical Materials Research Part B | 2015
J. A. Panadero; L. Vikingsson; J.L. Gómez Ribelles; S. Lanceros-Méndez; Vitor Sencadas
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrows criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Journal of Biomechanics | 2015
L. Vikingsson; José A. Gómez-Tejedor; G. Gallego Ferrer; J.L. Gómez Ribelles
The aim of this experimental study is to predict the long-term mechanical behavior of a porous scaffold implanted in a cartilage defect for tissue engineering purpose. Fatigue studies were performed by up to 100,000 unconfined compression cycles in a polycaprolactone (PCL) scaffold with highly interconnected pores architecture. The scaffold compliance, stress-strain response and hysteresis energy have been measured after different number of fatigue cycles, while the morphology has been observed by scanning electron microscopy at the same fatigue times. To simulate the growing tissue in the scaffold/tissue construct, the scaffold was filled with an aqueous solution of polyvinyl alcohol (PVA) and subjected to repeating cycles of freezing and thawing that increase the hydrogel stiffness. Fatigue studies show that the mechanical loading provokes failure of the dry scaffold at a smaller number of deformation cycles than when it is immersed in water, and also that 100,000 compressive dynamic cycles do not affect the scaffold/gel construct. This shows the stability of the scaffold implanted in a chondral defect and gives a realistic simulation of the mechanical performance from implantation of the empty scaffold to regeneration of the new tissue inside the scaffolds pores.
International Journal of Artificial Organs | 2015
L. Vikingsson; María Sancho-Tello; Amparo Ruiz-Sauri; Santos Martínez Díaz; José A. Gómez-Tejedor; Gloria Gallego Ferrer; Carmen Carda; Joan C. Monllau; José Luis Gómez Ribelles
Purpose Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Results For both groups most of the defects (75%) showed an articular surface that was completely or almost completely repaired with a neotissue. Nevertheless, the surface had a rougher appearance than controls and the repair tissue was immature. In the trials with solely scaffold implantation, severe subchondral bone alterations were seen with many large nodular formations. These alterations were ameliorated when implanting the scaffold with a subchondral bone anchoring pin. Discussions The results show that tissue repair is improved by implanting a PCL scaffold compared to solely microfracture surgery, and most importantly, that subchondral bone alterations, normally seen after microfracture surgery, were partially prevented when implanting the PCL scaffold with a fixation system to the subchondral bone.
Materials Science and Engineering: C | 2016
L. Vikingsson; Carmen M. Antolinos-Turpín; José A. Gómez-Tejedor; G. Gallego Ferrer; J.L. Gómez Ribelles
This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.
Journal of Materials Science | 2016
L. Vikingsson; Alvaro Vinals-Guitart; Alfonso Valera-Martínez; Jaime Riera; A. Vidaurre; Gloria Gallego Ferrer; José Luis Gómez Ribelles
The aim of this study is to prove the feasibility of a system able to apply local mechanical loading on cells seeded in a hydrogel for tissue engineering applications. This experimental study is based on a previously developed artificial cartilage model with different concentrations of poly(vinyl alcohol) (PVA) that simulates the cartilage extracellular matrix (ECM). Poly(l-lactic acid) (PLLA) microspheres with dispersed magnetic nanoparticles (MNPs) were produced with an emulsion method. These microspheres were embedded in aqueous PVA solutions with varying concentration to resemble increased viscosity of growing tissue during regeneration. The ability to induce a local deformation in the ECM was assessed by applying a steady or an oscillatory magnetic field gradient to different PVA solutions containing the magnetic microparticles, similarly as in ferrogels. PLLA microparticle motion was recorded, and the images were analyzed. Besides, PVA gels and PLLA microparticles were introduced into the pores of a polycaprolactone scaffold, and the microparticle distribution and the mechanical properties of the construct were evaluated. The results of this experimental model show that the dispersion of PLLA microparticles containing MNPs, together with cells in a supporting gel, will allow applying local mechanical stimuli to cells during tissue regeneration. This local stimulation can have a positive effect on the differentiation of seeded cells and improve tissue regeneration.
Materials & Design | 2016
Daniela M. Correia; Clarisse Ribeiro; Vitor Sencadas; L. Vikingsson; M Oliver Gasch; J.L. Gómez Ribelles; Gabriela Botelho; S. Lanceros-Méndez
Journal of The Mechanical Behavior of Biomedical Materials | 2014
L. Vikingsson; G. Gallego Ferrer; José A. Gómez-Tejedor; J.L. Gómez Ribelles
Polymer Degradation and Stability | 2016
Juan Manuel Fernández; Tamara Gisela Oberti; L. Vikingsson; José Luis Gómez Ribelles; Ana María Cortizo