Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lakshmi K. Matukumalli is active.

Publication


Featured researches published by Lakshmi K. Matukumalli.


PLOS ONE | 2009

Development and Characterization of a High Density SNP Genotyping Assay for Cattle

Lakshmi K. Matukumalli; Cynthia T. Lawley; Robert D. Schnabel; Jeremy F. Taylor; Mark F. Allan; Michael P. Heaton; Jeff O'Connell; Stephen S. Moore; T. P. L. Smith; Tad S. Sonstegard; Curtis P. Van Tassell

The success of genome-wide association (GWA) studies for the detection of sequence variation affecting complex traits in human has spurred interest in the use of large-scale high-density single nucleotide polymorphism (SNP) genotyping for the identification of quantitative trait loci (QTL) and for marker-assisted selection in model and agricultural species. A cost-effective and efficient approach for the development of a custom genotyping assay interrogating 54,001 SNP loci to support GWA applications in cattle is described. A novel algorithm for achieving a compressed inter-marker interval distribution proved remarkably successful, with median interval of 37 kb and maximum predicted gap of <350 kb. The assay was tested on a panel of 576 animals from 21 cattle breeds and six outgroup species and revealed that from 39,765 to 46,492 SNP are polymorphic within individual breeds (average minor allele frequency (MAF) ranging from 0.24 to 0.27). The assay also identified 79 putative copy number variants in cattle. Utility for GWA was demonstrated by localizing known variation for coat color and the presence/absence of horns to their correct genomic locations. The combination of SNP selection and the novel spacing algorithm allows an efficient approach for the development of high-density genotyping platforms in species having full or even moderate quality draft sequence. Aspects of the approach can be exploited in species which lack an available genome sequence. The BovineSNP50 assay described here is commercially available from Illumina and provides a robust platform for mapping disease genes and QTL in cattle.


Nature Methods | 2008

SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.

Curtis P. Van Tassell; T. P. L. Smith; Lakshmi K. Matukumalli; Jeremy F Taylor; Robert D. Schnabel; Cynthia T. Lawley; Christian D. Haudenschild; Stephen S. Moore; Wesley C. Warren; Tad S. Sonstegard

High-density single-nucleotide polymorphism (SNP) arrays have revolutionized the ability of genome-wide association studies to detect genomic regions harboring sequence variants that affect complex traits. Extensive numbers of validated SNPs with known allele frequencies are essential to construct genotyping assays with broad utility. We describe an economical, efficient, single-step method for SNP discovery, validation and characterization that uses deep sequencing of reduced representation libraries (RRLs) from specified target populations. Using nearly 50 million sequences generated on an Illumina Genome Analyzer from DNA of 66 cattle representing three populations, we identified 62,042 putative SNPs and predicted their allele frequencies. Genotype data for these 66 individuals validated 92% of 23,357 selected genome-wide SNPs, with a genotypic and sequence allele frequency correlation of r = 0.67. This approach for simultaneous de novo discovery of high-quality SNPs and population characterization of allele frequencies may be applied to any species with at least a partially sequenced genome.


Genetics | 2007

A Soybean Transcript Map: Gene Distribution, Haplotype and Single-Nucleotide Polymorphism Analysis

Ik Young Choi; David L. Hyten; Lakshmi K. Matukumalli; Qijian Song; Julian M. Chaky; Charles V. Quigley; Kevin Chase; K. Gordon Lark; Robert Reiter; Mun Sup Yoon; Eun Young Hwang; Seung In Yi; Nevin D. Young; Randy C. Shoemaker; Curtis P. Van Tassell; James E. Specht; Perry B. Cregan

The first genetic transcript map of the soybean genome was created by mapping one SNP in each of 1141 genes in one or more of three recombinant inbred line mapping populations, thus providing a picture of the distribution of genic sequences across the mapped portion of the genome. Single-nucleotide polymorphisms (SNPs) were discovered via the resequencing of sequence-tagged sites (STSs) developed from expressed sequence tag (EST) sequence. From an initial set of 9459 polymerase chain reaction primer sets designed to a diverse set of genes, 4240 STSs were amplified and sequenced in each of six diverse soybean genotypes. In the resulting 2.44 Mbp of aligned sequence, a total of 5551 SNPs were discovered, including 4712 single-base changes and 839 indels for an average nucleotide diversity of θ = 0.000997. The analysis of the observed genetic distances between adjacent genes vs. the theoretical distribution based upon the assumption of a random distribution of genes across the 20 soybean linkage groups clearly indicated that genes were clustered. Of the 1141 genes, 291 mapped to 72 of the 112 gaps of 5–10 cM in the preexisting simple sequence repeat (SSR)-based map, while 111 genes mapped in 19 of the 26 gaps >10 cM. The addition of 1141 sequence-based genic markers to the soybean genome map will provide an important resource to soybean geneticists for quantitative trait locus discovery and map-based cloning, as well as to soybean breeders who increasingly depend upon marker-assisted selection in cultivar improvement.


Journal of Dairy Science | 2012

Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.

Malena Erbe; Ben J. Hayes; Lakshmi K. Matukumalli; S. Goswami; Phil J. Bowman; C. M. Reich; B. A. Mason; Michael E. Goddard

Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0.03 for Jerseys, averaged across traits). Even this limited and nonsignificant advantage was only observed when BayesR was used. An alternative panel, which extracted the SNP in the transcribed part of the bovine genome from the 624,213 SNP panel (to give 58,532 SNP), performed better, with an increase in accuracy of 0.03 for Jerseys across traits. This panel captures much of the increased genomic content of the 624,213 SNP panel, with the advantage of a greatly reduced number of SNP effects to estimate. Taken together, using this panel, a combined breed reference and using BayesR rather than GBLUP_mod increased the accuracy of GEBV in Jerseys from 0.43 to 0.52, averaged across the 3 traits.


Theoretical and Applied Genetics | 2008

High-throughput genotyping with the GoldenGate assay in the complex genome of soybean

David L. Hyten; Qijian Song; Ik Young Choi; Mun Sup Yoon; James E. Specht; Lakshmi K. Matukumalli; Randall L. Nelson; Randy C. Shoemaker; Nevin D. Young; Perry B. Cregan

Large numbers of single nucleotide polymorphism (SNP) markers are now available for a number of crop species. However, the high-throughput methods for multiplexing SNP assays are untested in complex genomes, such as soybean, that have a high proportion of paralogous genes. The Illumina GoldenGate assay is capable of multiplexing from 96 to 1,536 SNPs in a single reaction over a 3-day period. We tested the GoldenGate assay in soybean to determine the success rate of converting verified SNPs into working assays. A custom 384-SNP GoldenGate assay was designed using SNPs that had been discovered through the resequencing of five diverse accessions that are the parents of three recombinant inbred line (RIL) mapping populations. The 384 SNPs that were selected for this custom assay were predicted to segregate in one or more of the RIL mapping populations. Allelic data were successfully generated for 89% of the SNP loci (342 of the 384) when it was used in the three RIL mapping populations, indicating that the complex nature of the soybean genome had little impact on conversion of the discovered SNPs into usable assays. In addition, 80% of the 342 mapped SNPs had a minor allele frequency >10% when this assay was used on a diverse sample of Asian landrace germplasm accessions. The high success rate of the GoldenGate assay makes this a useful technique for quickly creating high density genetic maps in species where SNP markers are rapidly becoming available.


Genome Research | 2010

Analysis of copy number variations among diverse cattle breeds

George E. Liu; Yali Hou; Bin Zhu; Maria Francesca Cardone; Lu Jiang; Angelo Cellamare; Apratim Mitra; L. J. Alexander; Luiz Lehmann Coutinho; Maria Elena Dell'Aquila; Lou C. Gasbarre; Gianni Lacalandra; Robert W. Li; Lakshmi K. Matukumalli; Dan J. Nonneman; Luciana Correia de Almeida Regitano; T. P. L. Smith; Jiuzhou Song; Tad S. Sonstegard; Curt P. Van Tassell; Mario Ventura; Evan E. Eichler; Tara G. McDaneld; J. W. Keele

Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or approximately 1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research.


BMC Genetics | 2007

Whole genome linkage disequilibrium maps in cattle

Stephanie D. McKay; Robert D. Schnabel; B. Murdoch; Lakshmi K. Matukumalli; Jan Aerts; Wouter Coppieters; Denny Crews; Emmanuel Dias Neto; C. A. Gill; Chuan Gao; Hideyuki Mannen; Paul Stothard; Z. Wang; Curt P. Van Tassell; John L. Williams; Jeremy F. Taylor; Stephen S. Moore

BackgroundBovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.ResultsLinkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r2 values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.ConclusionLinkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.


Genome Research | 2012

Copy number variation of individual cattle genomes using next-generation sequencing

Derek M. Bickhart; Yali Hou; Steven G. Schroeder; Can Alkan; Maria Francesca Cardone; Lakshmi K. Matukumalli; Jiuzhou Song; Robert D. Schnabel; Mario Ventura; Jeremy F. Taylor; José Fernando Garcia; Curtis P. Van Tassell; Tad S. Sonstegard; Evan E. Eichler; George E. Liu

Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one Holstein, and one Hereford) and one indicine (Nelore) cattle. Within mapped chromosomal sequence, we identified 1265 CNV regions comprising ~55.6-Mbp sequence--476 of which (~38%) have not previously been reported. We validated this sequence-based CNV call set with array comparative genomic hybridization (aCGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH), achieving a validation rate of 82% and a false positive rate of 8%. We further estimated absolute copy numbers for genomic segments and annotated genes in each individual. Surveys of the top 25 most variable genes revealed that the Nelore individual had the lowest copy numbers in 13 cases (~52%, χ(2) test; P-value <0.05). In contrast, genes related to pathogen- and parasite-resistance, such as CATHL4 and ULBP17, were highly duplicated in the Nelore individual relative to the taurine cattle, while genes involved in lipid transport and metabolism, including APOL3 and FABP2, were highly duplicated in the beef breeds. These CNV regions also harbor genes like BPIFA2A (BSP30A) and WC1, suggesting that some CNVs may be associated with breed-specific differences in adaptation, health, and production traits. By providing the first individualized cattle CNV and segmental duplication maps and genome-wide gene copy number estimates, we enable future CNV studies into highly duplicated regions in the cattle genome.


BMC Genetics | 2009

High-resolution haplotype block structure in the cattle genome

Rafael Villa-Angulo; Lakshmi K. Matukumalli; C. A. Gill; Jungwoo Choi; Curtis P. Van Tassell; John J. Grefenstette

BackgroundThe Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.ResultsFrom the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.ConclusionThis work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.


Journal of Dairy Science | 2009

Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada

G.R. Wiggans; Tad S. Sonstegard; P.M. VanRaden; Lakshmi K. Matukumalli; Robert D. Schnabel; Jeremy F. Taylor; F.S. Schenkel; C.P. Van Tassell

Nearly 57,000 single-nucleotide polymorphisms (SNP) genotyped with the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) were investigated to determine usefulness of the associated SNP for genomic prediction. Genotypes were obtained for 12,591 bulls and cows, and SNP were selected based on 5,503 bulls with genotypes from a larger set of SNP. The following SNP were deleted: 6,572 that were monomorphic, 3,213 with scoring problems (primarily because of poor definition of clusters and excess number of clusters), and 3,649 with a minor allele frequency of <2%. Number of SNP for each minor allele frequency class (> or =2%) was fairly uniform (777 to 1,004). For 5 contiguous SNP assigned to chromosome 7, no bulls were heterozygous, which indicated that those SNP are actually on the nonpseudoautosomal portion of the X chromosome. Another 178 SNP that were not assigned to a chromosome but that had many fewer heterozygotes than expected were also assigned to the X chromosome. Existence of Hardy-Weinberg equilibrium was investigated by comparing observed with expected heterozygosity. For 11 SNP, the observed percentage of heterozygous individuals differed from the expected by >15%; therefore, those SNP were deleted. For 2,628 SNP, the genotype at another SNP was highly correlated (i.e., genotypes were identical for >99.5% of bulls), and those were deleted. After edits, 40,874 SNP remained. A parent-progeny conflict was declared when the genotypes were alternate homozygotes. Mean number of conflicts was 2.3 when pedigree was correct and 2,411 when it was incorrect. The sire was genotyped for >93% of animals. Maternal grandsire genotype was similarly checked; however, because alternate homozygotes could be valid, a conflict threshold of 16% was used to indicate a need for further investigation. Genotyping consistency was investigated for 21 bulls genotyped twice with differences primarily from SNP that were not scored in one of the genotypes. Concordance for readable SNP was extremely high (99.96-100%). Thousands of SNP that were polymorphic in Holsteins were monomorphic in Jerseys or Brown Swiss, which indicated that breed-specific SNP sets are required or that all breeds need to be considered in the SNP selection process. Genotypes from the Illumina BovineSNP50 BeadChip are of high accuracy and provide the basis for genomic evaluations in the United States and Canada.

Collaboration


Dive into the Lakshmi K. Matukumalli's collaboration.

Top Co-Authors

Avatar

Tad S. Sonstegard

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Curtis P. Van Tassell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

C.P. Van Tassell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

George E. Liu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Perry B. Cregan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curt P. Van Tassell

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge