Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lara S. Collier is active.

Publication


Featured researches published by Lara S. Collier.


Nature | 2005

Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse

Lara S. Collier; Corey M. Carlson; Shruthi Ravimohan; Adam J. Dupuy; David A. Largaespada

Retroviruses, acting as somatic cell insertional mutagens, have been widely used to identify cancer genes in the haematopoietic system and mammary gland. An insertional mutagen for use in other mouse somatic cells would facilitate the identification of genes involved in tumour formation in a wider variety of tissues. Here we report the ability of the Sleeping Beauty transposon to act as a somatic insertional mutagen to identify genes involved in solid tumour formation. A Sleeping Beauty transposon, engineered to elicit loss-of-function or gain-of-function mutations, transposed in all somatic tissues tested and accelerated tumour formation in mice predisposed to cancer. Cloning transposon insertion sites from these tumours revealed the presence of common integration sites, at known and candidate cancer genes, similar to those observed in retroviral mutagenesis screens. Sleeping Beauty is a new tool for unbiased, forward genetic screens for cancer genes in vivo.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Science | 2009

A transposon-based genetic screen in mice identifies genes altered in colorectal cancer

Timothy K. Starr; Raha Allaei; Kevin A. T. Silverstein; Rodney Staggs; Aaron L. Sarver; Tracy L. Bergemann; Mihir Gupta; M. Gerard O'Sullivan; Ilze Matise; Adam J. Dupuy; Lara S. Collier; Scott Powers; Ann L. Oberg; Yan W. Asmann; Stephen N. Thibodeau; Lino Tessarollo; Neal G. Copeland; Nancy A. Jenkins; Robert T. Cormier; David A. Largaespada

Human colorectal cancers (CRCs) display a large number of genetic and epigenetic alterations, some of which are causally involved in tumorigenesis (drivers) and others that have little functional impact (passengers). To help distinguish between these two classes of alterations, we used a transposon-based genetic screen in mice to identify candidate genes for CRC. Mice harboring mutagenic Sleeping Beauty (SB) transposons were crossed with mice expressing SB transposase in gastrointestinal tract epithelium. Most of the offspring developed intestinal lesions, including intraepithelial neoplasia, adenomas, and adenocarcinomas. Analysis of over 16,000 transposon insertions identified 77 candidate CRC genes, 60 of which are mutated and/or dysregulated in human CRC and thus are most likely to drive tumorigenesis. These genes include APC, PTEN, and SMAD4. The screen also identified 17 candidate genes that had not previously been implicated in CRC, including POLI, PTPRK, and RSPO2.


Nature Biotechnology | 2009

A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma

Vincent W. Keng; Augusto Villanueva; Derek Y. Chiang; Adam J. Dupuy; Barbara J. Ryan; Ilze Matise; Kevin A. T. Silverstein; Aaron L. Sarver; Timothy K. Starr; Keiko Akagi; Lino Tessarollo; Lara S. Collier; Scott Powers; Scott W. Lowe; Nancy A. Jenkins; Neal G. Copeland; Josep M. Llovet; David A. Largaespada

We describe a system that permits conditional mobilization of a Sleeping Beauty (SB) transposase allele by Cre recombinase to induce cancer specifically in a tissue of interest. To demonstrate its potential for developing tissue-specific models of cancer in mice, we limit SB transposition to the liver by placing Cre expression under the control of an albumin enhancer/promoter sequence and screen for hepatocellular carcinoma (HCC)–associated genes. From 8,060 nonredundant insertions cloned from 68 tumor nodules and comparative analysis with data from human HCC samples, we identify 19 loci strongly implicated in causing HCC. These encode genes, such as EGFR and MET, previously associated with HCC and others, such as UBE2H, that are potential new targets for treating this neoplasm. Our system, which could be modified to drive transposon-based insertional mutagenesis wherever tissue-specific Cre expression is possible, promises to enhance understanding of cancer genomes and identify new targets for therapeutic development.


Nucleic Acids Research | 2006

Structure-based prediction of insertion-site preferences of transposons into chromosomes

Aron M. Geurts; Christopher S. Hackett; Jason B. Bell; Tracy L. Bergemann; Lara S. Collier; Corey M. Carlson; David A. Largaespada; Perry B. Hackett

Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called Vstep, could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161–173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS©, that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS© has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system.


Cancer Research | 2009

Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon based somatic mutagenesis screen

Eric P. Rahrmann; Lara S. Collier; Todd P. Knutson; Meghan E. Doyal; Sheri L. Kuslak; Laura E. Green; Rita L. Malinowski; Laura Roethe; Keiko Akagi; Michelle A. Waknitz; Wei Huang; David A. Largaespada; Paul C. Marker

Retroviral and transposon-based mutagenesis screens in mice have been useful for identifying candidate cancer genes for some tumor types. However, many of the organs that exhibit the highest cancer rates in humans, including the prostate, have not previously been amenable to these approaches. This study shows for the first time that the Sleeping Beauty transposon system can be used to identify candidate prostate cancer genes in mice. Somatic mobilization of a mutagenic transposon resulted in focal epithelial proliferation and hyperplasia in the prostate. Efficient methods were established to identify transposon insertion sites in these lesions, and analysis of transposon insertions identified candidate prostate cancer genes at common insertion sites, including Pde4d. PDE4D was also overexpressed in human prostate cancer patient samples and cell lines, and changes in PDE4D mRNA isoform expression were observed in human prostate cancers. Furthermore, knockdown of PDE4D reduced the growth and migration of prostate cancer cells in vitro, and knockdown of PDE4D reduced the growth and proliferation rate of prostate cancer xenografts in vivo. These data indicate that PDE4D functions as a proliferation promoting factor in prostate cancer, and the Sleeping Beauty transposon system is a useful tool for identifying candidate prostate cancer genes.


Cancer Research | 2009

Whole-Body Sleeping Beauty Mutagenesis Can Cause Penetrant Leukemia/Lymphoma and Rare High-Grade Glioma without Associated Embryonic Lethality

Lara S. Collier; David J. Adams; Christopher S. Hackett; Laura Bendzick; Keiko Akagi; Michael N. Davies; Miechaleen D. Diers; Fausto J. Rodriguez; Aaron M. Bender; Christina Tieu; Ilze Matise; Adam J. Dupuy; Neal G. Copeland; Nancy A. Jenkins; J. Graeme Hodgson; William A. Weiss; Robert B. Jenkins; David A. Largaespada

The Sleeping Beauty (SB) transposon system has been used as a somatic mutagen to identify candidate cancer genes. In previous studies, efficient leukemia/lymphoma formation on an otherwise wild-type genetic background occurred in mice undergoing whole-body mobilization of transposons, but was accompanied by high levels of embryonic lethality. To explore the utility of SB for large-scale cancer gene discovery projects, we have generated mice that carry combinations of different transposon and transposase transgenes. We have identified a transposon/transposase combination that promotes highly penetrant leukemia/lymphoma formation on an otherwise wild-type genetic background, yet does not cause embryonic lethality. Infiltrating gliomas also occurred at lower penetrance in these mice. SB-induced or accelerated tumors do not harbor large numbers of chromosomal amplifications or deletions, indicating that transposon mobilization likely promotes tumor formation by insertional mutagenesis of cancer genes, and not by promoting wide-scale genomic instability. Cloning of transposon insertions from lymphomas/leukemias identified common insertion sites at known and candidate novel cancer genes. These data indicate that a high mutagenesis rate can be achieved using SB without high levels of embryonic lethality or genomic instability. Furthermore, the SB system could be used to identify new genes involved in lymphomagenesis/leukemogenesis.


Cancer Research | 2010

Sleeping Beauty–Mediated Somatic Mutagenesis Implicates CSF1 in the Formation of High-Grade Astrocytomas

Aaron M. Bender; Lara S. Collier; Fausto J. Rodriguez; Christina Tieu; Jon D. Larson; Chandralekha Halder; Eric Mahlum; Thomas M. Kollmeyer; Keiko Akagi; Gobinda Sarkar; David A. Largaespada; Robert B. Jenkins

The Sleeping Beauty (SB) transposon system has been used as an insertional mutagenesis tool to identify novel cancer genes. To identify glioma-associated genes, we evaluated tumor formation in the brain tissue from 117 transgenic mice that had undergone constitutive SB-mediated transposition. Upon analysis, 21 samples (18%) contained neoplastic tissue with features of high-grade astrocytomas. These tumors expressed glial markers and were histologically similar to human glioma. Genomic DNA from SB-induced astrocytoma tissue was extracted and transposon insertion sites were identified. Insertions in the growth factor gene Csf1 were found in 13 of the 21 tumors (62%), clustered in introns 5 and 8. Using reverse transcription-PCR, we documented increased Csf1 RNAs in tumor versus adjacent normal tissue, with the identification of transposon-terminated Csf1 mRNAs in astrocytomas with SB insertions in intron 8. Analysis of human glioblastomas revealed increased levels of Csf1 RNA and protein. Together, these results indicate that SB-insertional mutagenesis can identify high-grade astrocytoma-associated genes and they imply an important role for CSF1 in the development of these tumors.


Cancer Research | 2010

Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach.

Jenny Mattison; Jaap Kool; Anthony G. Uren; Jeroen de Ridder; Lodewyk F. A. Wessels; Jos Jonkers; Graham R. Bignell; Adam Butler; Alistair G. Rust; Markus Brosch; Catherine Helen Wilson; Louise van der Weyden; David A. Largaespada; Michael R. Stratton; P. Andy Futreal; Maarten van Lohuizen; Anton Berns; Lara S. Collier; Tim Hubbard; David J. Adams

Comparative genomic hybridization (CGH) can reveal important disease genes but the large regions identified could sometimes contain hundreds of genes. Here we combine high-resolution CGH analysis of 598 human cancer cell lines with insertion sites isolated from 1,005 mouse tumors induced with the murine leukemia virus (MuLV). This cross-species oncogenomic analysis revealed candidate tumor suppressor genes and oncogenes mutated in both human and mouse tumors, making them strong candidates for novel cancer genes. A significant number of these genes contained binding sites for the stem cell transcription factors Oct4 and Nanog. Notably, mice carrying tumors with insertions in or near stem cell module genes, which are thought to participate in cell self-renewal, died significantly faster than mice without these insertions. A comparison of the profile we identified to that induced with the Sleeping Beauty (SB) transposon system revealed significant differences in the profile of recurrently mutated genes. Collectively, this work provides a rich catalogue of new candidate cancer genes for functional analysis.


Genome Biology | 2007

Transposable elements and the dynamic somatic genome

Lara S. Collier; David A. Largaespada

Although alterations in the genomes of somatic cells cannot be passed on to future generations, they can have beneficial or detrimental effects on the host organism, depending on the context in which they occur. This review outlines the ways in which transposable elements have important consequences for somatic cell genomes.

Collaboration


Dive into the Lara S. Collier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fausto J. Rodriguez

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ishani De

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan D. Steffen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Scott C. Kogan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge