Laramie Duncan
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laramie Duncan.
Nature | 2016
Monkol Lek; Konrad J. Karczewski; Eric Vallabh Minikel; Kaitlin E. Samocha; Eric Banks; Timothy Fennell; Anne H. O’Donnell-Luria; James S. Ware; Andrew Hill; Beryl B. Cummings; Taru Tukiainen; Daniel P. Birnbaum; Jack A. Kosmicki; Laramie Duncan; Karol Estrada; Fengmei Zhao; James Zou; Emma Pierce-Hoffman; Joanne Berghout; David Neil Cooper; Nicole Deflaux; Mark A. DePristo; Ron Do; Jason Flannick; Menachem Fromer; Laura Gauthier; Jackie Goldstein; Namrata Gupta; Daniel P. Howrigan; Adam Kiezun
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human ‘knockout’ variants in protein-coding genes.
Nature | 2014
Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan
Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.
American Journal of Psychiatry | 2011
Laramie Duncan; Matthew C. Keller
OBJECTIVE Gene-by-environment interaction (G×E) studies in psychiatry have typically been conducted using a candidate G×E (cG×E) approach, analogous to the candidate gene association approach used to test genetic main effects. Such cG×E research has received widespread attention and acclaim, yet cG×E findings remain controversial. The authors examined whether the many positive cG×E findings reported in the psychiatric literature were robust or if, in aggregate, cG×E findings were consistent with the existence of publication bias, low statistical power, and a high false discovery rate. METHOD The authors conducted analyses on data extracted from all published studies (103 studies) from the first decade (2000-2009) of cG×E research in psychiatry. RESULTS Ninety-six percent of novel cG×E studies were significant compared with 27% of replication attempts. These findings are consistent with the existence of publication bias among novel cG×E studies, making cG×E hypotheses appear more robust than they actually are. There also appears to be publication bias among replication attempts because positive replication attempts had smaller average sample sizes than negative ones. Power calculations using observed sample sizes suggest that cG×E studies are underpowered. Low power along with the likely low prior probability of a given cG×E hypothesis being true suggests that most or even all positive cG×E findings represent type I errors. CONCLUSIONS In this new era of big data and small effects, a recalibration of views about groundbreaking findings is necessary. Well-powered direct replications deserve more attention than novel cG×E findings and indirect replications.
Nature Genetics | 2015
Brendan Bulik-Sullivan; Hilary Finucane; Verneri Anttila; Alexander Gusev; Felix R. Day; Po-Ru Loh; Laramie Duncan; John Perry; Nick Patterson; Elise B. Robinson; Mark J. Daly; Alkes L. Price; Benjamin M. Neale
Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are the lack of availability of individual-level genotype data and widespread sample overlap among meta-analyses. We circumvent these difficulties by introducing a technique—cross-trait LD Score regression—for estimating genetic correlation that requires only GWAS summary statistics and is not biased by sample overlap. We use this method to estimate 276 genetic correlations among 24 traits. The results include genetic correlations between anorexia nervosa and schizophrenia, anorexia and obesity, and educational attainment and several diseases. These results highlight the power of genome-wide analyses, as there currently are no significantly associated SNPs for anorexia nervosa and only three for educational attainment.
Behavior Genetics | 2010
Matthew C. Keller; Sarah E. Medland; Laramie Duncan
The classical twin design (CTD) uses observed covariances from monozygotic and dizygotic twin pairs to infer the relative magnitudes of genetic and environmental causes of phenotypic variation. Despite its wide use, it is well known that the CTD can produce biased estimates if its stringent assumptions are not met. By modeling observed covariances of twins’ relatives in addition to twins themselves, extended twin family designs (ETFDs) require less stringent assumptions, can estimate many more parameters of interest, and should produce less biased estimates than the CTD. However, ETFDs are more complicated to use and interpret, and by attempting to estimate a large number of parameters, the precision of parameter estimates may suffer. This paper is a formal investigation into a simple question: Is it worthwhile to use more complex models such as ETFDs in behavioral genetics? In particular, we compare the bias, precision, and accuracy of estimates from the CTD and three increasingly complex ETFDs. We find the CTD does a decent job of estimating broad sense heritability, but CTD estimates of shared environmental effects and the relative importance of additive versus non-additive genetic variance can be biased, sometimes wildly so. Increasingly complex ETFDs, on the other hand, are more accurate and less sensitive to assumptions than simpler models. We conclude that researchers interested in characterizing the environment or the makeup of genetic variation should use ETFDs when possible.
Journal of Developmental and Behavioral Pediatrics | 2010
Erik G. Willcutt; Bruce F. Pennington; Laramie Duncan; Shelley D. Smith; Janice M. Keenan; Sally J. Wadsworth; John C. DeFries; Richard K. Olson
Objective: This article has 2 primary goals. First, a brief tutorial on behavioral and molecular genetic methods is provided for readers without extensive training in these areas. To illustrate the application of these approaches to developmental disorders, etiologically informative studies of reading disability (RD), math disability (MD), and attention-deficit hyperactivity disorder (ADHD) are then reviewed. Implications of the results for these specific disorders and for developmental disabilities as a whole are discussed, and novel directions for future research are highlighted. Method: Previous family and twin studies of RD, MD, and ADHD are reviewed systematically, and the extensive molecular genetic literatures on each disorder are summarized. To illustrate 4 novel extensions of these etiologically informative approaches, new data are presented from the Colorado Learning Disabilities Research Center, an ongoing twin study of the etiology of RD, ADHD, MD, and related disorders. Conclusions: RD, MD, and ADHD are familial and heritable, and co-occur more frequently than expected by chance. Molecular genetic studies suggest that all 3 disorders have complex etiologies, with multiple genetic and environmental risk factors each contributing to overall risk for each disorder. Neuropsychological analyses indicate that the 3 disorders are each associated with multiple neuropsychological weaknesses, and initial evidence suggests that comorbidity between the 3 disorders is due to common genetic risk factors that lead to slow processing speed.
Human Mutation | 2015
Dominik Grimm; Chloé-Agathe Azencott; Fabian Aicheler; Udo Gieraths; Daniel G. MacArthur; Kaitlin E. Samocha; David Neil Cooper; Peter D. Stenson; Mark J. Daly; Jordan W. Smoller; Laramie Duncan; Karsten M. Borgwardt
Prioritizing missense variants for further experimental investigation is a key challenge in current sequencing studies for exploring complex and Mendelian diseases. A large number of in silico tools have been employed for the task of pathogenicity prediction, including PolyPhen‐2, SIFT, FatHMM, MutationTaster‐2, MutationAssessor, Combined Annotation Dependent Depletion, LRT, phyloP, and GERP++, as well as optimized methods of combining tool scores, such as Condel and Logit. Due to the wealth of these methods, an important practical question to answer is which of these tools generalize best, that is, correctly predict the pathogenic character of new variants. We here demonstrate in a study of 10 tools on five datasets that such a comparative evaluation of these tools is hindered by two types of circularity: they arise due to (1) the same variants or (2) different variants from the same protein occurring both in the datasets used for training and for evaluation of these tools, which may lead to overly optimistic results. We show that comparative evaluations of predictors that do not address these types of circularity may erroneously conclude that circularity confounded tools are most accurate among all tools, and may even outperform optimized combinations of tools.
American Psychologist | 2014
Laramie Duncan; Alisha R. Pollastri; Jordan W. Smoller
As our field seeks to elucidate the biopsychosocial etiologies of mental health disorders, many traditional psychological and social science researchers have added, or plan to add, genetic components to their programs of research. An understanding of the history, methods, and perspectives of the psychiatric genetics community is useful in this pursuit. In this article we provide a brief overview of psychiatric genetic methods and findings. This overview lays the groundwork for a more thorough review of gene-environment interaction (G×E) research and the candidate gene approach to G×E research that remains popular among many psychologists and social scientists. We describe the differences in perspective between psychiatric geneticists and psychological scientists that have contributed to a growing divide between the research cited and conducted by these two related disciplines. Finally, we outline a strategy for the future of research on gene-environment interactions that capitalizes on the relative strengths of each discipline. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Twin Research and Human Genetics | 2009
Matthew C. Keller; Sarah E. Medland; Laramie Duncan; Peter K. Hatemi; Michael C. Neale; Hermine H. Maes; Lindon J. Eaves
The classical twin design uses data on the variation of and covariation between monozygotic and dizygotic twins to infer underlying genetic and environmental causes of phenotypic variation in the population. By using data from additional relative classes, such as parents, extended twin family designs more comprehensively describe the causes of phenotypic variation. This article introduces an extension of previous extended twin family models, the Cascade model, which uses information on twins as well as their siblings, spouses, parents, and children to differentiate two genetic and six environmental sources of phenotypic variation. The Cascade also relaxes assumptions regarding mating and cultural transmission that existed in previous extended twin family designs. The estimation of additional parameters and relaxation of assumptions is potentially important, not only because it allows more fine-grained descriptions of the causes of phenotypic variation, but more importantly, because it can reduce the biases in parameter estimates that exist in earlier designs.
Nature Communications | 2014
Jacqueline I. Goldstein; L. Fredrik Jarskog; Chris Hilliard; Ana Alfirevic; Laramie Duncan; Denis Fourches; Hailiang Huang; Monkol Lek; Benjamin M. Neale; Stephan Ripke; Jin P. Szatkiewicz; Alexander Tropsha; Edwin J. C. G. van den Oord; Ingolf Cascorbi; Michael Dettling; Ephraim Gazit; Donald C. Goff; Arthur L. Holden; Deanna L. Kelly; Anil K. Malhotra; Jimmi Nielsen; Munir Pirmohamed; Dan Rujescu; Thomas Werge; Deborah L. Levy; Richard C. Josiassen; James L. Kennedy; Jeffrey A. Lieberman; Mark J. Daly; Patrick F. Sullivan
Clozapine is a particularly effective antipsychotic medication but its use is curtailed by the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), a severe adverse drug reaction occurring in up to 1% of treated individuals. Identifying genetic risk factors for CIAG could enable safer and more widespread use of clozapine. Here we perform the largest and most comprehensive genetic study of CIAG to date by interrogating 163 cases using genome-wide genotyping and whole-exome sequencing. We find that two loci in the major histocompatibility complex are independently associated with CIAG: a single amino acid in HLA-DQB1 (126Q) (P=4.7×10−14, odds ratio, OR=0.19, 95% CI 0.12–0.29) and an amino acid change in the extracellular binding pocket of HLA-B (158T) (P=6.4×10−10, OR=3.3, 95% CI 2.3–4.9). These associations dovetail with the roles of these genes in immunogenetic phenotypes and adverse drug responses for other medications, and provide insight into the pathophysiology of CIAG.