Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larissa M. Balogh is active.

Publication


Featured researches published by Larissa M. Balogh.


Molecular Pharmaceutics | 2012

Characterization of organic anion transporting polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes.

Emi Kimoto; Kenta Yoshida; Larissa M. Balogh; Yi-an Bi; Kazuya Maeda; Ayman El-Kattan; Yuichi Sugiyama; Yurong Lai

Since the substrate specificities of OATP1B1, 1B3, and 2B1 are broad and overlapping, the contribution of each isoform to the overall hepatic uptake is of concern when assessing transporter-mediated drug-drug interactions (DDIs) or genetic polymorphism impact in the clinic. Herein, we quantitatively measured OATP proteins in cryopreserved hepatocytes, sandwich-cultured human hepatocytes (SCHH), and the liver, and examined the relationship with functional uptake of OATP substrates in an effort to identify the OATP isoform(s) contributing to the hepatic uptake of pitavastatin. The modulation of OATP expression in SCHH was found to be lot-dependent. However, OATP protein measurements averaged from 5 lots of SCHH were comparable to that of suspended hepatocytes. All three OATP transporters in suspended hepatocytes and SCHH were significantly lower than those in the liver. In SCHH, the uptake of CCK-8 and pravastatin was found to be associated with the expression of OATP1B3 and OATP1B1, respectively. In suspended hepatocytes, OATP1B1 appeared to show a positive trend with respect to the uptake of pitavastatin, which suggests a selective contribution of OATP1B1 to pitavastatin transport and thus an OATP quantitative protein expression-activity relationship. While the passive diffusion of rosuvastatin in SCHH was consistent across hepatocyte lots, the passive diffusion of pitavastatin varied over a broad range (>4-fold) in suspended hepatocytes and was inversely correlated with transporter-mediated uptake, presumably due to cell membrane alterations imparted by cryopreservation. Collectively, SCHH maintains OATP protein expression and membrane integrity and, if feasible when considering research goals, would be considered a superior tool for the characterization of in vitro transport parameters without the complication of membrane leakage.


Drug Metabolism and Disposition | 2012

Interindividual Variability in Hepatic Expression of the Multidrug Resistance-Associated Protein 2 (MRP2/ABCC2): Quantification by Liquid Chromatography/Tandem Mass Spectrometry

Anand K. Deo; Bhagwat Prasad; Larissa M. Balogh; Yurong Lai; Jashvant D. Unadkat

Multidrug-associated protein 2 (MRP2) is an efflux transporter that is expressed at the bile canalicular membrane. To allow in vitro to in vivo extrapolation of the contribution of MRP2 toward hepatic disposition of its substrates, data on the interindividual variability of hepatic MRP2 protein expression are required. Therefore, we quantified the expression of MRP2 in the University of Washington (UW) human liver bank (n = 51) using a modified version of a previously validated liquid chromatography/tandem mass spectrometry assay. An unlabeled (LTIIPQDPILFSGSLR) and stable isotope-labeled (LTIIPQDPILFSGSL[13C615N1]R) surrogate peptide for MRP2 were used as the calibrator and internal standard, respectively. After isolation of the membrane fraction from the liver tissue, in-solution tryptic digestion was conducted. Quality control samples created by spiking human serum albumin or pooled human liver (n = 51) matrix with three different MRP2 synthetic peptide concentrations generated error and precision values of less than 15%. As determined by the surrogate peptide, the average MRP2 expression in the UW liver bank samples was 1.54 ± 0.64 fmol/μg liver membrane protein and was found to be independent of age (7–63 years) or sex. A single nucleotide polymorphism in the promoter region (rs717620), previously thought to affect MRP2 expression, did not influence hepatic expression of MRP2. In contrast, the single nucleotide polymorphism 21214G>A (V417I; rs2273697) was associated with significantly higher hepatic MRP2 expression.


Drug Metabolism Reviews | 2011

Interactions of glutathione transferases with 4-hydroxynonenal

Larissa M. Balogh; William M. Atkins

Electrophilic products of lipid peroxidation are important contributors to the progression of several pathological states. The prototypical α,β–unsaturated aldehyde, 4-hydroxynonenal (HNE), triggers cellular events associated with oxidative stress, which can be curtailed by the glutathione-dependent elimination of HNE. The glutathione transferases (GSTs) are a major determinate of the intracellular concentration of HNE and can influence susceptibility to toxic effects, particularly when HNE and GST levels are altered in disease states. In this article, we provide a brief summary of the cellular effects of HNE, followed by a review of its GST-catalyzed detoxification, with an emphasis on the structural attributes that play an important role in the interactions with alpha-class GSTs. Some of the key determining characteristics that impart high alkenal activity reside in the unique C-terminal interactions of the GSTA4-4 enzyme. Studies encompassing both kinetic and structural analyses of related isoforms will be highlighted, with additional attention to stereochemical aspects that demonstrate the capacity of GSTA4-4 to detoxify both enantiomers of the biologically relevant racemic mixture while generating a select set of diastereomeric products with subsequent implications. A summary of the literature that examines the interplay between GSTs and HNE in model systems relevant to oxidative stress will also be discussed to demonstrate the magnitude of importance of GSTs in the overall detoxification scheme.


Journal of Biological Chemistry | 2007

Functional Promiscuity Correlates with Conformational Heterogeneity in A-class Glutathione S-Transferases

Liming Hou; Matthew T. Honaker; Laura M. Shireman; Larissa M. Balogh; Arthur G. Roberts; Kei Cheuk Ng; Abhinav Nath; William M. Atkins

The structurally related glutathione S-transferase isoforms GSTA1-1 and GSTA4-4 differ greatly in their relative catalytic promiscuity. GSTA1-1 is a highly promiscuous detoxification enzyme. In contrast, GSTA4-4 exhibits selectivity for congeners of the lipid peroxidation product 4-hydroxynonenal. The contribution of protein dynamics to promiscuity has not been studied. Therefore, hydrogen/deuterium exchange mass spectrometry (H/DX) and fluorescence lifetime distribution analysis were performed with glutathione S-transferases A1-1 and A4-4. Differences in local dynamics of the C-terminal helix were evident as expected on the basis of previous studies. However, H/DX demonstrated significantly greater solvent accessibility throughout most of the GSTA1-1 sequence compared with GSTA4-4. A Phe-111/Tyr-217 aromatic-aromatic interaction in A4-4, which is not present in A1-1, was hypothesized to increase core packing. “Swap” mutants that eliminate this interaction from A4-4 or incorporate it into A1-1 yield H/DX behavior that is intermediate between the wild type templates. In addition, the single Trp-21 residue of each isoform was exploited to probe the conformational heterogeneity at the intrasubunit domain-domain interface. Excited state fluorescence lifetime distribution analysis indicates that this core residue is more conformationally heterogeneous in GSTA1-1 than in GSTA4-4, and this correlates with greater stability toward urea denaturation for GSTA4-4. The fluorescence distribution and urea sensitivity of the mutant proteins were intermediate between the wild type templates. The results suggest that the differences in protein dynamics of these homologs are global. The results suggest also the possible importance of extensive conformational plasticity to achieve high levels of functional promiscuity, possibly at the cost of stability.


Drug Metabolism and Disposition | 2012

Inter-individual Variability in Hepatic Expression of the Multidrug Resistance-associated Protein 2 (MRP2/ABCC2): Quantification by LC/MS/MS

Anand K. Deo; Bhagwat Prasad; Larissa M. Balogh; Yurong Lai; Jashvant D. Unadkat

Multidrug-associated protein 2 (MRP2) is an efflux transporter that is expressed at the bile canalicular membrane. To allow in vitro to in vivo extrapolation of the contribution of MRP2 toward hepatic disposition of its substrates, data on the interindividual variability of hepatic MRP2 protein expression are required. Therefore, we quantified the expression of MRP2 in the University of Washington (UW) human liver bank (n = 51) using a modified version of a previously validated liquid chromatography/tandem mass spectrometry assay. An unlabeled (LTIIPQDPILFSGSLR) and stable isotope-labeled (LTIIPQDPILFSGSL[13C615N1]R) surrogate peptide for MRP2 were used as the calibrator and internal standard, respectively. After isolation of the membrane fraction from the liver tissue, in-solution tryptic digestion was conducted. Quality control samples created by spiking human serum albumin or pooled human liver (n = 51) matrix with three different MRP2 synthetic peptide concentrations generated error and precision values of less than 15%. As determined by the surrogate peptide, the average MRP2 expression in the UW liver bank samples was 1.54 ± 0.64 fmol/μg liver membrane protein and was found to be independent of age (7–63 years) or sex. A single nucleotide polymorphism in the promoter region (rs717620), previously thought to affect MRP2 expression, did not influence hepatic expression of MRP2. In contrast, the single nucleotide polymorphism 21214G>A (V417I; rs2273697) was associated with significantly higher hepatic MRP2 expression.


Journal of Pharmaceutical Sciences | 2013

Absolute measurement of species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) and its modulation in cultured hepatocytes.

Xi Qiu; Yi-An Bi; Larissa M. Balogh; Yurong Lai

Species differences among membrane transporters can be remarkable and difficult to properly assess by conventional methods. Herein, we employed the first use of stable isotope labeling in mammals or stable isotope-labeled peptides combined with mass spectrometry to identify species differences in sodium taurocholate cotransporting polypeptide (NTCP/Ntcp) protein expression in liver tissue and to characterize the modulation of protein expression in sandwich-cultured human (SCHH) and rat hepatocytes (SCRH). The lower limit of quantification was established to be 5 fmol on column with a standard curve that was linear up to 2000 fmol. The accuracy and precision were evaluated with three quality control samples and known amounts of synthetic proteotypic peptides that were spiked into the membrane protein extracts. The overall relative error and coefficient of variation were less than 10%. The expression of Ntcp in mouse and rat was significant higher than that in human (five-fold) and monkey (two-fold) and ranked as mouse > rat >> monkey > human. In the cultured hepatocytes, although significant downregulation of Ntcp expression in SCRH at day 5 after the culture was detected, NTCP expression in SCHH was comparable to the suspension hepatocytes. The results suggested that NTCP/Ntcp modulation in cultured hepatocytes is species specific.


Biochemistry | 2010

Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxynonenal.

Larissa M. Balogh; Isolde Le Trong; Kimberly A. Kripps; Laura M. Shireman; Ronald E. Stenkamp; Wei Zhang; Bengt Mannervik; William M. Atkins

Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and an engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward an endogenously formed toxin.


Journal of Biological Chemistry | 2008

The Stereochemical Course of 4-Hydroxy-2-nonenal Metabolism by Glutathione S-Transferases *□

Larissa M. Balogh; Arthur G. Roberts; Laura M. Shireman; Robert J. Greene; William M. Atkins

4-Hydroxy-2-nonenal (HNE) is a toxic aldehyde generated during lipid peroxidation and has been implicated in a variety of pathological states associated with oxidative stress. Glutathione S-transferase (GST) A4-4 is recognized as one of the predominant enzymes responsible for the metabolism of HNE. However, substrate and product stereoselectivity remain to be fully explored. The results from a product formation assay indicate that hGSTA4-4 exhibits a modest preference for the biotransformation of S-HNE in the presence of both enantiomers. Liquid chromatography mass spectrometry analyses using the racemic and enantioisomeric HNE substrates explicitly demonstrate that hGSTA4-4 conjugates glutathione to both HNE enantiomers in a completely stereoselective manner that is not maintained in the spontaneous reaction. Compared with other hGST isoforms, hGSTA4-4 shows the highest degree of stereoselectivity. NMR experiments in combination with simulated annealing structure determinations enabled the determination of stereochemical configurations for the GSHNE diastereomers and are consistent with an hGSTA4-4-catalyzed nucleophilic attack that produces only the S-configuration at the site of conjugation, regardless of substrate chirality. In total these results indicate that hGSTA4-4 exhibits an intriguing combination of low substrate stereoselectivity with strict product stereoselectivity. This behavior allows for the detoxification of both HNE enantiomers while generating only a select set of GSHNE diastereomers with potential stereochemical implications concerning their effects and fates in biological tissues.


Journal of Pharmacology and Experimental Therapeutics | 2010

Preclinical and Clinical Evidence for the Collaborative Transport and Renal Secretion of an Oxazolidinone Antibiotic by Organic Anion Transporter 3 (OAT3/SLC22A8) and Multidrug and Toxin Extrusion Protein 1 (MATE1/SLC47A1)

Yurong Lai; Kathleen E. Sampson; Larissa M. Balogh; Timothy G. Brayman; Steven R. Cox; Wade J. Adams; Vikas Kumar; Jeffrey C. Stevens

N-({(5S)-3-[4-(1,1-dioxidothiomorpholin-4-yl)-3,5-difluorophenyl]-2-oxo-1,3-oxazolidin-5-yl}methyl)acetamide (PNU-288034), an oxazolidinone antibiotic, was terminated in phase I clinical development because of insufficient exposure. Analysis of the drug pharmacokinetic and elimination profiles suggested that PNU-288034 undergoes extensive renal secretion in humans. The compound was well absorbed and exhibited approximately linear pharmacokinetics in the oral dose range of 100 to 1000 mg in human. PNU-288034 was metabolically stable in liver microsomes across species, and unchanged drug was cleared in the urine by an apparent active renal secretion process in rat and monkey (two to four times glomerular filtration rate) but not dog. In vitro studies conducted to characterize the transporters involved demonstrated PNU-288034 uptake by human organic anion transporter 3 (OAT3; Km = 44 ± 5 μM) and human multidrug and toxin extrusion protein 1 (hMATE1; Km = 340 ± 55 μM). The compound was also transported by multidrug resistance P-glycoprotein and breast cancer resistance protein. In contrast, human organic cation transporter 2, human OAT1, and hMATE2-K did not transport PNU-288034. Coadministration of PNU-288034 and the OAT3 inhibitor probenecid significantly increased PNU-288034 plasma area under the curve (170%) and reduced both plasma and renal clearance in monkey. Coadministration of PNU-288034 and cimetidine, a MATE1 inhibitor, also reduced plasma clearance in rat to a rate comparable with probenecid coadministration. Collectively, our results demonstrated a strong in vitro–in vivo correlation for active renal secretion coordinated through the vectorial transport process of OAT3 and MATE1, which ultimately resulted in limiting the systemic exposure of PNU-288034.


Drug Metabolism and Disposition | 2011

Pharmacokinetic interaction of the antiparasitic agents ivermectin and spinosad in dogs

Stewart T. Dunn; Laura Hedges; Kathleen E. Sampson; Yurong Lai; Sean P. Mahabir; Larissa M. Balogh; Charles W. Locuson

Neurological side effects consistent with ivermectin toxicity have been observed in dogs when high doses of the common heartworm prevention agent ivermectin are coadministered with spinosad, an oral flea prevention agent. Based on numerous reports implicating the role of the ATP-binding cassette drug transporter P-glycoprotein (P-gp) in ivermectin efflux in dogs, an in vivo study was conducted to determine whether ivermectin toxicity results from a pharmacokinetic interaction with spinosad. Beagle dogs were randomized to three groups treated orally in parallel: Treatment group 1 (T01) received ivermectin (60 μg/kg), treatment group 2 (T02) received spinosad (30 mg/kg), and treatment group 3 (T03) received both ivermectin and spinosad. Whereas spinosad pharmacokinetics were unchanged in the presence of ivermectin, ivermectin plasma pharmacokinetics revealed a statistically significant increase in the area under the curve (3.6-fold over the control) when ivermectin was coadministered with spinosad. The majority of the interaction is proposed to result from inhibition of intestinal and/or hepatic P-gp-mediated secretory pathways of ivermectin. Furthermore, in vitro Transwell experiments with a human multidrug resistance 1-transfected Madin-Darby canine kidney II cell line showed polarized efflux at concentrations ≤2 μM, indicating that spinosad is a high-affinity substrate of P-gp. In addition, spinosad was a strong inhibitor of the P-gp transport of digoxin, calcein acetoxymethyl ester (IC50 = 3.2 μM), and ivermectin (IC50 = 2.3 μM). The findings suggest that spinosad, acting as a P-gp inhibitor, increases the risk of ivermectin neurotoxicity by inhibiting secretion of ivermectin to increase systemic drug levels and by inhibiting P-gp at the blood-brain barrier.

Collaboration


Dive into the Larissa M. Balogh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anand K. Deo

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhagwat Prasad

Yokohama College of Pharmacy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge