Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Baranello is active.

Publication


Featured researches published by Laura Baranello.


Nature Structural & Molecular Biology | 2013

Transcription-dependent dynamic supercoiling is a short-range genomic force

Fedor Kouzine; Ashutosh Gupta; Laura Baranello; Damian Wojtowicz; Khadija Ben-Aissa; Juhong Liu; Teresa M. Przytycka; David Levens

Transcription has the capacity to mechanically modify DNA topology, DNA structure and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitts lymphoma cells by using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kilobases upstream of the start sites of active genes. Low- and high-output promoters handled this torsional stress differently, as shown by using inhibitors of transcription and topoisomerases and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high-output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.


Cell | 2016

RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription

Laura Baranello; Damian Wojtowicz; Kairong Cui; Devaiah Bn; Chung Hj; Chan-Salis Ky; Guha R; Wilson K; Zhang X; Zhang H; Piotrowski J; Thomas Cj; Singer Ds; Pugh Bf; Pommier Y; Teresa M. Przytycka; Fedor Kouzine; Lewis Ba; Keji Zhao; David Levens

We report a mechanism through which the transcription machinery directly controls topoisomerase 1 (TOP1) activity to adjust DNA topology throughout the transcription cycle. By comparing TOP1 occupancy using chromatin immunoprecipitation sequencing (ChIP-seq) versus TOP1 activity using topoisomerase 1 sequencing (TOP1-seq), a method reported here to map catalytically engaged TOP1, TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. TOP1 stimulation is strongly dependent on the kinase activity of BRD4, a protein that phosphorylates Ser2-CTD and regulates RNAPII pause-release. Thus the coordinated action of BRD4 and TOP1 overcame the torsional stress opposing transcription as RNAPII commenced elongation but preserved negative supercoiling that assists promoter melting at start sites. This nexus between transcription and DNA topology promises to elicit new strategies to intercept pathological gene expression.


Biochimica et Biophysica Acta | 2012

The importance of being supercoiled: how DNA mechanics regulate dynamic processes.

Laura Baranello; David Levens; Ashutosh Gupta; Fedor Kouzine

Through dynamic changes in structure resulting from DNA-protein interactions and constraints given by the structural features of the double helix, chromatin accommodates and regulates different DNA-dependent processes. All DNA transactions (such as transcription, DNA replication and chromosomal segregation) are necessarily linked to strong changes in the topological state of the double helix known as torsional stress or supercoiling. As virtually all DNA transactions are in turn affected by the torsional state of DNA, these changes have the potential to serve as regulatory signals detected by protein partners. This two-way relationship indicates that DNA dynamics may contribute to the regulation of many events occurring during cell life. In this review we will focus on the role of DNA supercoiling in the cellular processes, with particular emphasis on transcription. Besides giving an overview on the multiplicity of factors involved in the generation and dissipation of DNA torsional stress, we will discuss recent studies which give new insight into the way cells use DNA dynamics to perform functions otherwise not achievable. This article is part of a Special Issue entitled: Chromatin in time and space.


Nucleus | 2014

DNA topology and transcription

Fedor Kouzine; David Levens; Laura Baranello

Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.


International Journal of Molecular Sciences | 2014

DNA Break Mapping Reveals Topoisomerase II Activity Genome-Wide

Laura Baranello; Fedor Kouzine; Damian Wojtowicz; Kairong Cui; Teresa M. Przytycka; Keji Zhao; David Levens

Genomic DNA is under constant assault by endogenous and exogenous DNA damaging agents. DNA breakage can represent a major threat to genome integrity but can also be necessary for genome function. Here we present approaches to map DNA double-strand breaks (DSBs) and single-strand breaks (SSBs) at the genome-wide scale by two methods called DSB- and SSB-Seq, respectively. We tested these methods in human colon cancer cells and validated the results using the Topoisomerase II (Top2)-poisoning agent etoposide (ETO). Our results show that the combination of ETO treatment with break-mapping techniques is a powerful method to elaborate the pattern of Top2 enzymatic activity across the genome.


Molecular Cell | 2017

Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation

Kyong Rim Kieffer-Kwon; Keisuke Nimura; Suhas S.P. Rao; Jianliang Xu; Seolkyoung Jung; Aleksandra Pekowska; Marei Dose; Evan Stevens; Ewy Mathe; Peng Dong; Su Chen Huang; Maria Aurelia Ricci; Laura Baranello; Ying Zheng; Francesco Tomassoni Ardori; Wolfgang Resch; Diana A. Stavreva; Steevenson Nelson; Michael J. McAndrew; Adriel Casellas; Elizabeth H. Finn; Charles Gregory; Brian Glenn St Hilaire; Steven M. Johnson; Wendy Dubois; Maria Pia Cosma; Eric Batchelor; David Levens; Robert D. Phair; Tom Misteli

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Chromosome Research | 2016

ChIP bias as a function of cross-linking time

Laura Baranello; Fedor Kouzine; Suzanne Sanford; David Levens

The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts.


Biophysical Reviews | 2016

Controlling gene expression by DNA mechanics: emerging insights and challenges

David Levens; Laura Baranello; Fedor Kouzine

Transcription initiation is a major control point for the precise regulation of gene expression. Our knowledge of this process has been mainly derived from protein-centric studies wherein cis-regulatory DNA sequences play a passive role, mainly in arranging the protein machinery to coalesce at the transcription start sites of genes in a spatial and temporal-specific manner. However, this is a highly dynamic process in which molecular motors such as RNA polymerase II (RNAPII), helicases, and other transcription factors, alter the level of mechanical force in DNA, rather than simply a set of static DNA–protein interactions. The double helix is a fiber that responds to flexural and torsional stress, which if accumulated, can affect promoter output as well as change DNA and chromatin structure. The relationship between DNA mechanics and the control of early transcription initiation events has been under-investigated. Genomic techniques to display topological stress and conformational variation in DNA across the mammalian genome provide an exciting new insight on the role of DNA mechanics in the early stages of the transcription cycle. Without understanding how torsional and flexural stresses are generated, transmitted, and dissipated, no model of transcription will be complete and accurate.


American Journal of Human Genetics | 2016

GTF2E2 Mutations Destabilize the General Transcription Factor Complex TFIIE in Individuals with DNA Repair-Proficient Trichothiodystrophy

Christiane Kuschal; Elena Botta; Donata Orioli; John J. DiGiovanna; Sara Seneca; Kathelijn Keymolen; Deborah Tamura; E. Heller; Sikandar G. Khan; Giuseppina Caligiuri; Manuela Lanzafame; Tiziana Nardo; Roberta Ricotti; Fiorenzo A. Peverali; Robert M. Stephens; Yongmei Zhao; Alan R. Lehmann; Laura Baranello; David Levens; Kenneth H. Kraemer; Miria Stefanini

The general transcription factor IIE (TFIIE) is essential for transcription initiation by RNA polymerase II (RNA pol II) via direct interaction with the basal transcription/DNA repair factor IIH (TFIIH). TFIIH harbors mutations in two rare genetic disorders, the cancer-prone xeroderma pigmentosum (XP) and the cancer-free, multisystem developmental disorder trichothiodystrophy (TTD). The phenotypic complexity resulting from mutations affecting TFIIH has been attributed to the nucleotide excision repair (NER) defect as well as to impaired transcription. Here, we report two unrelated children showing clinical features typical of TTD who harbor different homozygous missense mutations in GTF2E2 (c.448G>C [p.Ala150Pro] and c.559G>T [p.Asp187Tyr]) encoding the beta subunit of transcription factor IIE (TFIIEβ). Repair of ultraviolet-induced DNA damage was normal in the GTF2E2 mutated cells, indicating that TFIIE was not involved in NER. We found decreased protein levels of the two TFIIE subunits (TFIIEα and TFIIEβ) as well as decreased phosphorylation of TFIIEα in cells from both children. Interestingly, decreased phosphorylation of TFIIEα was also seen in TTD cells with mutations in ERCC2, which encodes the XPD subunit of TFIIH, but not in XP cells with ERCC2 mutations. Our findings support the theory that TTD is caused by transcriptional impairments that are distinct from the NER disorder XP.


International Journal of Molecular Sciences | 2018

DNA Supercoiling, Topoisomerases, and Cohesin: Partners in Regulating Chromatin Architecture?

Camilla Björkegren; Laura Baranello

Although our knowledge of chromatin organization has advanced significantly in recent years, much about the relationships between different features of genome architecture is still unknown. Folding of mammalian genomes into spatial domains is thought to depend on architectural proteins, other DNA-binding proteins, and different forms of RNA. In addition, emerging evidence points towards the possibility that the three-dimensional organisation of the genome is controlled by DNA topology. In this scenario, cohesin, CCCTC-binding factor (CTCF), transcription, DNA supercoiling, and topoisomerases are integrated to dictate different layers of genome organization, and the contribution of all four to gene control is an important direction of future studies. In this perspective, we review recent studies that give new insight on how DNA supercoiling shape chromatin structure.

Collaboration


Dive into the Laura Baranello's collaboration.

Top Co-Authors

Avatar

David Levens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fedor Kouzine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Damian Wojtowicz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Teresa M. Przytycka

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steevenson Nelson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Resch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Batchelor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kairong Cui

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Keji Zhao

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge