Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steevenson Nelson is active.

Publication


Featured researches published by Steevenson Nelson.


PLOS Pathogens | 2008

Maturation of West Nile Virus Modulates Sensitivity to Antibody-Mediated Neutralization

Steevenson Nelson; Christiane A. Jost; Qinq Xu; Jessica Ess; Julie E. Martin; Theodore Oliphant; Stephen S. Whitehead; Anna P. Durbin; Barney S. Graham; Michael S. Diamond; Theodore C. Pierson

West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.


Journal of Virology | 2009

Human Monoclonal Antibodies against West Nile Virus Induced by Natural Infection Neutralize at a Postattachment Step

Matthew R. Vogt; Bastiaan Moesker; Jaap Goudsmit; Mandy Jongeneelen; S. Kyle Austin; Theodore Oliphant; Steevenson Nelson; Theodore C. Pierson; Jan Wilschut; Mark Throsby; Michael S. Diamond

ABSTRACT West Nile virus (WNV) is a neurotropic flavivirus that is now a primary cause of epidemic encephalitis in North America. Studies of mice have demonstrated that the humoral immune response against WNV limits primary infection and protects against a secondary challenge. The most-potent neutralizing mouse monoclonal antibodies (MAbs) recognize an epitope on the lateral ridge of domain III (DIII-lr) of the envelope (E) protein. However, studies with serum from human patients show that antibodies against the DIII-lr epitope comprise, at best, a minor component of the human anti-WNV antibody response. Herein, we characterize in detail two WNV-specific human MAbs, CR4348 and CR4354, that were isolated from B-cell populations of convalescent patients. These MAbs strongly neutralize WNV infection of cultured cells, protect mice against lethal infection in vivo, and yet poorly recognize recombinant forms of the E protein. Instead, CR4348 and CR4354 bind determinants on intact WNV virions and subviral particles in a pH-sensitive manner, and neutralization is altered by mutations at the dimer interface in domain II and the hinge between domains I and II, respectively. CR4348 and CR4354 human MAbs neutralize infection at a postattachment step in the viral life cycle, likely by inhibiting acid-induced fusion within the endosome.


Cell | 2013

Global regulation of promoter melting in naïve lymphocytes

Fedor Kouzine; Damian Wojtowicz; Arito Yamane; Wolfgang Resch; Kyong-Rim Kieffer-Kwon; Russell W. Bandle; Steevenson Nelson; Hirotaka Nakahashi; Parirokh Awasthi; Lionel Feigenbaum; Hervé Menoni; Jan H.J. Hoeijmakers; Wim Vermeulen; Hui Ge; Teresa M. Przytycka; David Levens; Rafael Casellas

Lymphocyte activation is initiated by a global increase in messenger RNA synthesis. However, the mechanisms driving transcriptome amplification during the immune response are unknown. By monitoring single-stranded DNA genome wide, we show that the genome of naive cells is poised for rapid activation. In G0, ∼90% of promoters from genes to be expressed in cycling lymphocytes are polymerase loaded but unmelted and support only basal transcription. Furthermore, the transition from abortive to productive elongation is kinetically limiting, causing polymerases to accumulate nearer to transcription start sites. Resting lymphocytes also limit the expression of the transcription factor IIH complex, including XPB and XPD helicases involved in promoter melting and open complex extension. To date, two rate-limiting steps have been shown to control global gene expression in eukaryotes: preinitiation complex assembly and polymerase pausing. Our studies identify promoter melting as a third key regulatory step and propose that this mechanism ensures a prompt lymphocyte response to invading pathogens.


Virology | 2008

Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation

Camilo Ansarah-Sobrinho; Steevenson Nelson; Christiane A. Jost; Stephen S. Whitehead; Theodore C. Pierson

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for 50 to 100 million human infections each year, highlighting the need for a safe and effective vaccine. In this study, we describe the production of pseudoinfectious DENV reporter virus particles (RVPs) using two different genetic complementation approaches, including the creation of cell lines that release reporter viruses in an inducible fashion. In contrast to studies with West Nile virus (WNV), production of infectious DENV RVPs was temperature-dependent; the yield of infectious DENV RVPs at 37 degrees C is significantly reduced in comparison to experiments conducted at lower temperatures or with WNV. This reflects both a significant reduction in the rate of infectious DENV RVP release over time, and the more rapid decay of infectious DENV RVPs at 37 degrees C. Optimized production approaches allow the production of DENV RVPs with titers suitable for the study of DENV entry, assembly, and the analysis of the humoral immune response of infected and vaccinated individuals.


Cell Host & Microbe | 2009

Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus.

Erin Mehlhop; Steevenson Nelson; Christiane A. Jost; Sergey Gorlatov; Syd Johnson; Daved H. Fremont; Michael S. Diamond; Theodore C. Pierson

Virus neutralization is governed by the number of antibodies that bind a virion during the cellular entry process. Cellular and serum factors that interact with antibodies have the potential to modulate neutralization potency. Although the addition of serum complement can increase the neutralizing activity of antiviral antibodies in vitro, the mechanism and significance of this augmented potency in vivo remain uncertain. Herein, we show that the complement component C1q increases the potency of antibodies against West Nile virus by modulating the stoichiometric requirements for neutralization. The addition of C1q does not result in virolysis but instead reduces the number of antibodies that must bind the virion to neutralize infectivity. For IgG subclasses that bind C1q avidly, this reduced stoichiometric threshold falls below the minimal number of antibodies required for antibody-dependent enhancement (ADE) of infection of cells expressing Fc-gamma receptors (CD32) and explains how C1q restricts the ADE of flavivirus infection.


Journal of Virology | 2009

Protonation of Individual Histidine Residues Is Not Required for the pH-Dependent Entry of West Nile Virus: Evaluation of the “Histidine Switch” Hypothesis

Steevenson Nelson; Subhajit Poddar; Tsai-Yu Lin; Theodore C. Pierson

ABSTRACT Histidine residues have been hypothesized to function as sensors of environmental pH that can trigger the activity of viral fusion proteins. We investigated a requirement for histidine residues in the envelope (E) protein of West Nile virus during pH-dependent entry into cells. Each histidine was individually replaced with a nonionizable amino acid and tested functionally. In each instance, mutants capable of orchestrating pH-dependent infection were identified. These results do not support a requirement for any single histidine as a pH-sensing “switch,” and they suggest that additional features of the E protein are involved in triggering pH-dependent steps in the flavivirus life cycle.


Molecular Cell | 2017

Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation

Kyong Rim Kieffer-Kwon; Keisuke Nimura; Suhas S.P. Rao; Jianliang Xu; Seolkyoung Jung; Aleksandra Pekowska; Marei Dose; Evan Stevens; Ewy Mathe; Peng Dong; Su Chen Huang; Maria Aurelia Ricci; Laura Baranello; Ying Zheng; Francesco Tomassoni Ardori; Wolfgang Resch; Diana A. Stavreva; Steevenson Nelson; Michael J. McAndrew; Adriel Casellas; Elizabeth H. Finn; Charles Gregory; Brian Glenn St Hilaire; Steven M. Johnson; Wendy Dubois; Maria Pia Cosma; Eric Batchelor; David Levens; Robert D. Phair; Tom Misteli

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Journal of Virology | 2012

A Novel Approach for the Rapid Mutagenesis and Directed Evolution of the Structural Genes of West Nile Virus

Tsai-Yu Lin; Kimberly A. Dowd; Carolyn J. Manhart; Steevenson Nelson; Stephen S. Whitehead; Theodore C. Pierson

ABSTRACT Molecular clone technology has proven to be a powerful tool for investigating the life cycle of flaviviruses, their interactions with the host, and vaccine development. Despite the demonstrated utility of existing molecular clone strategies, the feasibility of employing these existing approaches in large-scale mutagenesis studies is limited by the technical challenges of manipulating relatively large molecular clone plasmids that can be quite unstable when propagated in bacteria. We have developed a novel strategy that provides an extremely rapid approach for the introduction of mutations into the structural genes of West Nile virus (WNV). The backbone of this technology is a truncated form of the genome into which DNA fragments harboring the structural genes are ligated and transfected directly into mammalian cells, bypassing entirely the requirement for cloning in bacteria. The transfection of cells with this system results in the rapid release of WNV that achieves a high titer (∼107 infectious units/ml in 48 h). The suitability of this approach for large-scale mutagenesis efforts was established in two ways. First, we constructed and characterized a library of variants encoding single defined amino acid substitutions at the 92 residues of the “pr” portion of the precursor-to-membrane (prM) protein. Analysis of a subset of these variants identified a mutation that conferred resistance to neutralization by an envelope protein-specific antibody. Second, we employed this approach to accelerate the identification of mutations that allow escape from neutralizing antibodies. Populations of WNV encoding random changes in the E protein were produced in the presence of a potent monoclonal antibody, E16. Viruses resistant to neutralization were identified in a single passage. Together, we have developed a simple and rapid approach to produce infectious WNV that accelerates the process of manipulating the genome to study the structure and function of the structural genes of this important human pathogen.


Virology | 2009

Helical virus particles formed from morphological subunits of a membrane containing icosahedral virus.

Joseph P. Kononchik; Steevenson Nelson; Raquel Hernandez; Dennis Brown

The classic publication by Caspar and Klug in 1962 [Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27:1-24.] has formed the basis of much research on virus assembly. Caspar and Klug predicted that a single virus morphological unit could form a two dimensional lattice composed of 6-fold arrays (primitive plane), a family of icosahedra of increasing triangulation numbers (T) and helical arrays of varying length. We have shown that icosahedral viruses of varying T numbers can be produced using Sindbis virus [Ferreira, D. F. et al. 2003. Morphological variants of Sindbis virus produced by a mutation in the capsid protein. Virology 307:54-66]. Other studies have shown that Sindbis glycoproteins can also form a 2-dimensional lattice confirming Caspar and Klugs prediction of the primitive plane as a biologically relevant structure [VonBonsdorff, C. H., and S. C. Harrison. 1978. Sindbis virus glycoproteins form a regular icosahedral surface lattice. J. Virol. 28:578]. In this study we have used mutations in the glycoproteins of membrane containing Sindbis virus to create helical-virus-like particles from the morphological subunits of a virus of icosahedral geometry. The resulting virus particles were examined for subunit organization and were determined to be constructed of only 6-fold rotational arrays of the virus glycoproteins. A model of the tubular virus particles created from the 6-fold rotational arrays of Sindbis virus confirmed the observed structure. These experiments show that a common morphological unit (the Sindbis E1-E2 heterodimer) can produce three different morphological entities of varying dimensions in a membrane-containing virus system.


PLOS Computational Biology | 2016

Ups and Downs of Poised RNA Polymerase II in B-Cells.

Phuong Dao; Damian Wojtowicz; Steevenson Nelson; David Levens; Teresa M. Przytycka

Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5′ end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated “on demand”. Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation.

Collaboration


Dive into the Steevenson Nelson's collaboration.

Top Co-Authors

Avatar

Theodore C. Pierson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Resch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arito Yamane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David Levens

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura Vian

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Marei Dose

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Nathanael Pruett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Rafael Casellas

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge