Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Brunelli is active.

Publication


Featured researches published by Laura Brunelli.


Cancer Research | 2011

COMBINATION OF PI3K/mTOR INHIBITORS: ANTITUMOR ACTIVITY AND MOLECULAR CORRELATES

Marco Mazzoletti; Francesca Bortolin; Laura Brunelli; Roberta Pastorelli; Silvana Di Giandomenico; Eugenio Erba; Paolo Ubezio; Massimo Broggini

The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway is a major target for cancer therapy. As a strategy to induce the maximal inhibition of this pathway in cancer cells, we combined allosteric mTOR inhibitors (rapamycin and RAD001) with a dual PI3K/mTOR kinase inhibitor (PI-103). Both in vitro and in vivo, the combination exhibited more activity than single agents in human ovarian and prostate cancer cells that harbor alterations in the pathway. At the molecular level, combined inhibition of mTOR prevented the rebound activation of Akt that is seen after treatment with rapamycin and its analogues and caused more sustained inhibition of Akt phosphorylation. Furthermore, the combination strongly inhibited the expression of PI3K/Akt/mTOR downstream proteins. In particular, it showed greater activity than the single agents in inhibiting the phosphorylation of 4EBP1, both in vitro and in vivo, resulting in selective inhibition of CAP-dependent translation. A proteomic approach was used to confirm the identification of c-Myc as the key regulator for the reduction in downstream proteins affected by the combined inhibition of mTOR. In conclusion, the combination of a catalytic and an allosteric inhibitor of mTOR shows greater activity, without a concomitant increase in toxicity, than either drug alone, and this may have therapeutic implications for inhibiting this pathway in the clinical setting.


Scientific Reports | 2016

Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach

Manuela Ferrario; Alice Cambiaghi; Laura Brunelli; Silvia Giordano; Pietro Caironi; Luca Guatteri; Ferdinando Raimondi; Luciano Gattinoni; Roberto Latini; Serge Masson; Giuseppe Ristagno; Roberta Pastorelli

Septic shock remains a major problem in Intensive Care Unit, with high lethality and high-risk second lines treatments. In this preliminary retrospective investigation we examined plasma metabolome and clinical features in a subset of 20 patients with severe septic shock (SOFA score >8), enrolled in the multicenter Albumin Italian Outcome Sepsis study (ALBIOS, NCT00707122). Our purpose was to evaluate the changes of circulating metabolites in relation to mortality as a pilot study to be extended in a larger cohort. Patients were analyzed according to their 28-days and 90-days mortality. Metabolites were measured using a targeted mass spectrometry-based quantitative metabolomic approach that included acylcarnitines, aminoacids, biogenic amines, glycerophospholipids, sphingolipids, and sugars. Data-mining techniques were applied to evaluate the association of metabolites with mortality. Low unsaturated long-chain phosphatidylcholines and lysophosphatidylcholines species were associated with long-term survival (90-days) together with circulating kynurenine. Moreover, a decrease of these glycerophospholipids was associated to the event at 28-days and 90-days in combination with clinical variables such as cardiovascular SOFA score (28-day mortality model) or renal replacement therapy (90-day mortality model). Early changes in the plasma levels of both lipid species and kynurenine associated with mortality have potential implications for early intervention and discovering new target therapy.


Journal of Proteomics | 2012

Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls

Laura Brunelli; Marta Llansola; Vicente Felipo; Roberta Campagna; Luisa Airoldi; Massimiliano De Paola; Roberto Fanelli; Alessandro Mariani; Marco Mazzoletti; Roberta Pastorelli

Recent studies showed that food-contaminant non-dioxin-like polychlorinated biphenyls (NDL-PCBs) congeners (PCB52, PCB138, PCB180) have neurotoxic potential, but the cellular and molecular mechanisms underlying neuronal damage are not entirely known. The aim of this study was to assess whether in-vitro exposure to NDL-PCBs may alter the proteome profile of primary cerebellar neurons in order to expand our knowledge on NDL-PCBs neurotoxicity. Comparison of proteome from unexposed and exposed rat cerebellar neurons was performed using state-of-the-art label-free semi-quantitative mass-spectrometry method. We observed significant changes in the abundance of several proteins, that fall into two main classes: (i) novel targets for both PCB138 and 180, mediating the dysregulation of CREB pathways and ubiquitin-proteasome system; (ii) different congeners-specific targets (alpha-actinin-1 for PCB138; microtubule-associated-protein-2 for PCB180) that might lead to similar deleterious consequences on neurons cytoskeleton organization. Interference of the PCB congeners with synaptic formation was supported by the increased expression of pre- and post-synaptic proteins quantified by western blot and immunocytochemistry. Expression alteration of synaptic markers was confirmed in the cerebellum of rats developmentally exposed to these congeners, suggesting an adaptive response to neurodevelopmental toxicity on brain structures. As such, our work is expected to lead to new insights into the mechanisms of NDL-PCBs neurotoxicity.


Resuscitation | 2013

Early kynurenine pathway activation following cardiac arrest in rats, pigs, and humans

Giuseppe Ristagno; Michael Fries; Laura Brunelli; Francesca Fumagalli; Renzo Bagnati; Ilaria Russo; Lidia Staszewsky; Serge Masson; Giovanni Li Volti; Agata Zappalà; Matthias Derwall; Anne Brücken; Roberta Pastorelli; Roberto Latini

AIM OF THE STUDY Kynurenine pathway (KP) is a major route of the tryptophan (TRP) catabolism. In the present study, TRP and KP metabolites concentrations were measured in plasma from rats, pigs and humans after cardiac arrest (CA) in order to assess KP activation and its potential role in post-resuscitation outcome. METHODS Plasma was obtained from: (A) 24 rats, subjected to 6 min CA and 6 min of cardiopulmonary resuscitation (CPR); (B) 10 pigs, subjected to 10 min CA and 5 min CPR; and (C) 3 healthy human volunteers and 5 patients resuscitated from CA. KP metabolites were quantified by liquid chromatography multiple reaction monitoring mass spectrometry. Assessments were available at baseline, and 1-4h, and 3-5 days post-CA. RESULTS KP was activated after CA in rats, pigs, and humans. Decreases in TRP occurred during the post-resuscitation period and were accompanied by significant increases in its major metabolites, 3-hydroxyanthranilic acid (3-HAA) and kynurenic acid in each species, that persisted up to 3-5 days post-CA (p<0.01). In rats, changes in KP metabolites reflected changes in post-resuscitation myocardial function. In pigs, changes in TRP and increases in 3-HAA were significanlty related to the severity of cerebral histopathogical injuries. In humans, KP activation was observed, together with systemic inflammation. Post-CA increases in 3-HAA were greater in patients that did not survive. CONCLUSION In this fully translational investigation, the KP was activated early following resuscitation from CA in rats, pigs, and humans, and might have contributed to post-resuscitation outcome.


Critical Care Medicine | 2016

Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites

Francesca Pischiutta; Laura Brunelli; Pietro Romele; Antonietta Silini; Eliana Sammali; Lara Paracchini; Sergio Marchini; Laura Talamini; Paolo Bigini; Giorgio Battista Boncoraglio; Roberta Pastorelli; Maria Grazia De Simoni; Ornella Parolini; Elisa R. Zanier

Objectives:To define the features of human amniotic mesenchymal stromal cell secretome and its protective properties in experimental models of acute brain injury. Design:Prospective experimental study. Setting:Laboratory research. Subjects:C57Bl/6 mice. Interventions:Mice subjected to sham or traumatic brain injury by controlled cortical impact received human amniotic mesenchymal stromal cells or phosphate-buffered saline infused intracerebroventricularly or intravenously 24 hours after injury. Organotypic cortical brain slices exposed to ischemic injury by oxygen-glucose deprivation were treated with human amniotic mesenchymal stromal cells or with their secretome (conditioned medium) in a transwell system. Measurements and Main Results:Traumatic brain injured mice receiving human amniotic mesenchymal stromal cells intravenously or intracerebroventricularly showed early and lasting functional and anatomical brain protection. cortical slices injured by oxigen-glucose deprivation and treated with human amniotic mesenchymal stromal cells or conditioned medium showed comparable protective effects (neuronal rescue, promotion of M2 microglia polarization, induction of trophic factors) indicating that the exposure of human amniotic mesenchymal stromal cells to the injured tissue is not necessary for the release of bioactive factors. Using sequential size-exclusion and gel-filtration chromatography, we identified a conditioned medium subfraction, which specifically displays these highly protective properties and we found that this fraction was rich in bioactive molecules with molecular weight smaller than 700 Da. Quantitative RNA analysis and mass spectrometry-based peptidomics showed that the active factors are not proteins or RNAs. The metabolomic profiling of six metabolic classes identified a list of molecules whose abundance was selectively elevated in the active conditioned medium fraction. Conclusions:Human amniotic mesenchymal stromal cell-secreted factors protect the brain after acute injury. Importantly, a fraction rich in metabolites, and containing neither proteic nor ribonucleic molecules was protective. This study indicates the profiling of protective factors that could be useful in cell-free therapeutic approaches for acute brain injury.


Clinical & Developmental Immunology | 2014

Modulation of Circulating Cytokine-Chemokine Profile in Patients Affected by Chronic Venous Insufficiency Undergoing Surgical Hemodynamic Correction

Veronica Tisato; Giorgio Zauli; Sergio Gianesini; Erica Menegatti; Laura Brunelli; Roberto Manfredini; Paolo Zamboni; Paola Secchiero

The expression of proinflammatory cytokines/chemokines has been reported in in vitro/ex vivo settings of chronic venous insufficiency (CVI), but the identification of circulating mediators that might be associated with altered hemodynamic forces or might represent innovative biomarkers is still missing. In this study, the circulating levels of 31 cytokines/chemokines involved in inflammatory/angiogenic processes were analysed in (i) CVI patients at baseline before surgical hemody namic correction, (ii) healthy subjects, and (iii) CVI patients after surgery. In a subgroup of CVI patients, in whom the baseline levels of cytokines/chemokines were analyzed in paired blood samples obtained from varicose vein and forearm vein, EGF, PDGF, and RANTES were increased at the varicose vein site as compared to the general circulation. Moreover, while at baseline, CVI patients showed increased levels of 14 cytokines/chemokines as compared to healthy subjects, 6 months after surgery, 11 cytokines/chemokines levels were significantly reduced in the treated CVI patients as compared to the CVI patients before surgery. Of note, a patient who exhibited recurrence of the disease 6 months after surgery, showed higher levels of EGF, PDGF, and RANTES compared to nonrecurrent patients, highlighting the potential role of the EGF/PDGF/RANTES triad as sensitive biomarkers in the context of CVI.


Metabolomics | 2013

A combination of untargeted and targeted metabolomics approaches unveils changes in the kynurenine pathway following cardiopulmonary resuscitation

Laura Brunelli; Giuseppe Ristagno; Renzo Bagnati; Francesca Fumagalli; Roberto Latini; Roberto Fanelli; Roberta Pastorelli

The mechanisms responsible for post-resuscitation myocardial and cerebral dysfunction are not well understood, especially in the early post-resuscitation phases. In this investigation, we first adopted unbiased mass spectrometry-based metabolomic profiling to identify perturbations in circulating metabolites in a rat model of cardiac arrest and cardiopulmonary resuscitation. Our findings strongly indicated early alterations in a major route of the tryptophan catabolism, namely the kynurenines pathway, after resuscitation. Specific metabolites involved in the tryptophan catabolism were quantified absolutely using liquid chromatography-multiple reaction monitoring-mass spectrometry. Tryptophan plasma concentration fell significantly very early in the post-resuscitation phase, while its metabolites, l-kynurenine, kynurenic acid, 3-hydroxyanthranilic acid and 5-hydroxyindoleacetic acid, rose significantly. Changes in their concentration reflected changes in rat post-resuscitation myocardial dysfunction. Elevated plasma level of kynurenic acid, 3-hydroxyanthranilic acid were associated with significant decrease in ejection fraction and stroke volume. It is well known that kynurenines pathway is involved in the pathogenesis of numerous central nervous system disorders. By implication, altered levels of tryptophan metabolites in the early post resuscitation phase might contribute to the degree of cognitive recovery. Our results suggest that kynurenine pathway is activated early following resuscitation from cardiac arrest and might account for the severity of post-resuscitation syndrome. Our explorative investigation indicate that metabolomics can help to clarify unexplored biochemical pathways in cardiopulmonary resuscitation.


Scientific Reports | 2016

Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo.

Laura Brunelli; Elisa Caiola; Mirko Marabese; Massimo Broggini; Roberta Pastorelli

Oncogenes induce metabolic reprogramming on cancer cells. Recently, G12C KRAS mutation in isogenic NSCLC cell line has been shown to be a key player in promoting metabolic rewiring mainly through the regulation of glutamine metabolism to fuel growth and proliferation. Even though cell lines possessing many of the genetic backgrounds of the primary cancer they derive from could be a valuable pre-clinical model, they do not have the additional complexity present in the whole tumor that impact metabolism. This preliminary study is aimed to explore how cancer cell metabolism in culture might recapitulate the metabolic alterations present in vivo. Our result highlighted that the gross metabolic changes observed in G12C KRAS mutant cells growing in culture were also maintained in the derived xenograft model, suggesting that a simple in vitro cell model can give important insights into the metabolic alterations induced by cancer. This is of relevance for guiding effective targeting of those metabolic traits that underlie tumor progression and anticancer treatment responses.


Scientific Reports | 2017

Characterization of a metabolomic profile associated with responsiveness to therapy in the acute phase of septic shock

Alice Cambiaghi; Bernardo Bollen Pinto; Laura Brunelli; Francesca Falcetta; Federico Aletti; Roberta Pastorelli; Manuela Ferrario

The early metabolic signatures associated with the progression of septic shock and with responsiveness to therapy can be useful for developing target therapy. The Sequential Organ Failure Assessment (SOFA) score is used for stratifying risk and predicting mortality. This study aimed to verify whether different responses to therapy, assessed as changes in SOFA score at admission (T1, acute phase) and 48 h later (T2, post-resuscitation), are associated with different metabolite patterns. We examined the plasma metabolome of 21 septic shock patients (pts) enrolled in the Shockomics clinical trial (NCT02141607). Patients for which SOFAT2 was >8 and Δ = SOFAT1 − SOFAT2 < 5, were classified as not responsive to therapy (NR, 7 pts), the remaining 14 as responsive (R). We combined untargeted and targeted mass spectrometry-based metabolomics strategies to cover the plasma metabolites repertoire as far as possible. Metabolite concentration changes from T1 to T2 (Δ = T2 − T1) were used to build classification models. Our results support the emerging evidence that lipidome alterations play an important role in individual patients’ responses to infection. Furthermore, alanine indicates a possible alteration in the glucose-alanine cycle in the liver, providing a different picture of liver functionality from bilirubin. Understanding these metabolic disturbances is important for developing any effective tailored therapy for these patients.


Scientific Reports | 2016

Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

Mineko Terao; Maria Monica Barzago; Mami Kurosaki; Maddalena Fratelli; Marco Bolis; Andrea Borsotti; Paolo Bigini; Edoardo Micotti; Mirjana Carli; Roberto W. Invernizzi; Renzo Bagnati; Alice Passoni; Roberta Pastorelli; Laura Brunelli; Ivan Toschi; Valentina Cesari; Seigo Sanoh; Enrico Garattini

Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions.

Collaboration


Dive into the Laura Brunelli's collaboration.

Top Co-Authors

Avatar

Roberta Pastorelli

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Massimo Broggini

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Elisa Caiola

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renzo Bagnati

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Roberto Latini

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Francesca Fumagalli

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vicente Felipo

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge