Laura E. Rupprecht
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura E. Rupprecht.
Endocrinology | 2012
Amber L. Alhadeff; Laura E. Rupprecht; Matthew R. Hayes
Central glucagon-like-peptide-1 (GLP-1) receptor activation reduces food intake; however, brain nuclei and mechanism(s) mediating this effect remain poorly understood. Although central nervous system GLP-1 is produced almost exclusively in the nucleus of the solitary tract in the hindbrain, GLP-1 receptors (GLP-1R) are expressed throughout the brain, including nuclei in the mesolimbic reward system (MRS), e.g. the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Here, we examine the MRS as a potential site of action for GLP-1-mediated control of food intake and body weight. Double immunohistochemistry for Fluorogold (monosynaptic retrograde tracer) and GLP-1 neuron immunoreactivity indicated that GLP-1-producing nucleus tractus solitarius neurons project directly to the VTA, the NAc core, and the NAc shell. Pharmacological data showed that GLP-1R activation in the VTA, NAc core, and NAc shell decreased food intake, especially of highly-palatable foods, and body weight. Moreover, blockade of endogenous GLP-1R signaling in the VTA and NAc core resulted in a significant increase in food intake, establishing a physiological relevance for GLP-1 signaling in the MRS. Current data highlight these nuclei within the MRS as novel sites for GLP-1R-mediated control of food intake and body weight.
Neuropharmacology | 2012
Scott E. Kanoski; Laura E. Rupprecht; Samantha M. Fortin; Bart C. De Jonghe; Matthew R. Hayes
The FDA-approved glucagon-like-peptide-1 receptor (GLP-1R) agonists exendin-4 and liraglutide reduce food intake and body weight. Nausea is the most common adverse side effect reported with these GLP-1R agonists. Whether food intake suppression by exendin-4 and liraglutide occurs independently of nausea is unknown. Further, the neurophysiological mechanisms mediating the nausea associated with peripheral GLP-1R agonist use are poorly understood. Using two established rodent models of nausea [conditioned taste avoidance (CTA) and pica (ingestion of nonnutritive substances)], results show that all peripheral doses of exendin-4 that suppress food intake also produce CTA, whereas one dose of liraglutide suppresses intake without producing CTA. Chronic (12 days) daily peripheral administration of exendin-4 produces a progressive increase in pica coupled with stable, sustained food intake and body weight suppression, whereas the pica response and food intake reduction by daily liraglutide are more transient. Results demonstrate that the nausea response accompanying peripheral exendin-4 occurs via a vagal-independent pathway involving GLP-1R activation in the brain as the exendin-4-induced pica response is attenuated with CNS co-administration of the GLP-1R antagonist exendin-(9-39), but not by vagotomy. Direct administration of exendin-4 to the medial subnucleus of the nucleus tractus solitarius (mNTS), but not to the central nucleus of the amygdala, reduced food intake and produced a pica response, establishing the mNTS as a potential GLP-1R-expressing site mediating nausea responses associated with GLP-1R agonists.
American Journal of Physiology-endocrinology and Metabolism | 2013
Elizabeth G. Mietlicki-Baase; Pavel I. Ortinski; Laura E. Rupprecht; Diana R. Olivos; Amber L. Alhadeff; R. Christopher Pierce; Matthew R. Hayes
Glucagon-like peptide-1 receptor (GLP-1R) activation in the ventral tegmental area (VTA) is physiologically relevant for the control of palatable food intake. Here, we tested whether the food intake-suppressive effects of VTA GLP-1R activation are mediated by glutamatergic signaling within the VTA. Intra-VTA injections of the GLP-1R agonist exendin-4 (Ex-4) reduced palatable high-fat food intake in rats primarily by reducing meal size; these effects were mediated in part via glutamatergic AMPA/kainate but not NMDA receptor signaling. Additional behavioral data indicated that GLP-1R expressed specifically within the VTA can partially mediate the intake- and body weight-suppressive effects of systemically administered Ex-4, offering the intriguing possibility that this receptor population may be clinically relevant for food intake control. Intra-VTA Ex-4 rapidly increased tyrosine hydroxylase levels within the VTA, suggesting that GLP-1R activation modulates VTA dopaminergic signaling. Further evidence for this hypothesis was provided by electrophysiological data showing that Ex-4 increased the frequency of AMPA-mediated currents and reduced the paired/pulse ratio in VTA dopamine neurons. Together, these data provide novel mechanisms by which GLP-1R agonists in the mesolimbic reward system control for palatable food intake.
Neuropsychopharmacology | 2013
Elizabeth G. Mietlicki-Baase; Laura E. Rupprecht; Diana R. Olivos; Derek J. Zimmer; Mark D Alter; R. Christopher Pierce; Heath D. Schmidt; Matthew R. Hayes
The ability of amylin, a pancreatic β-cell-derived neuropeptide, to promote negative energy balance has been ascribed to neural activation at the area postrema. However, despite amylin binding throughout the brain, the possible role of amylin signaling at other nuclei in the control of food intake has been largely neglected. We show that mRNA for all components of the amylin receptor complex is expressed in the ventral tegmental area (VTA), a mesolimbic structure mediating food intake and reward. Direct activation of VTA amylin receptors reduces the intake of chow and palatable sucrose solution in rats. This effect is mediated by reductions in meal size and is not due to nausea/malaise or prolonged suppression of locomotor activity. VTA amylin receptor activation also reduces sucrose self-administration on a progressive ratio schedule. Finally, antagonist studies provide novel evidence that VTA amylin receptor blockade increases food intake and attenuates the intake-suppressive effects of a peripherally administered amylin analog, suggesting that amylin receptor signaling in the VTA is physiologically relevant for food intake control and potentially clinically relevant for the treatment of obesity.
Neuropsychopharmacology | 2012
Thomas J. Hopkins; Laura E. Rupprecht; Matthew R. Hayes; Julie A. Blendy; Heath D. Schmidt
Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Galantamine has recently been shown to reverse nicotine withdrawal-induced cognitive impairments in mice, which suggests that galantamine may function to prevent relapse in human smokers. However, there are no studies examining whether galantamine administration modulates nicotine self-administration and/or reinstatement of nicotine seeking in rodents. The present experiments were designed to determine the effects of galantamine administration on nicotine taking and reinstatement of nicotine-seeking behavior, an animal model of relapse. Moreover, the effects of galantamine on sucrose-maintained responding and sucrose seeking were also examined to determine whether galantamines effects generalized to other reinforced behaviors. An inverted U-shaped dose-response curve was obtained when animals self-administered different unit doses of nicotine with the highest responding for 0.03 mg/kg per infusion of nicotine. Acute galantamine administration (5.0 mg/kg, i.p.) attenuated nicotine self-administration when animals were maintained on either a fixed-ratio 5 (FR5) or progressive ratio (PR) schedule of reinforcement. Galantamine administration also attenuated the reinstatement of nicotine-seeking behavior. No significant effects of galantamine on sucrose self-administration or sucrose reinstatement were noted. Acetylcholinesterase inhibitors have also been shown to produce nausea and vomiting in humans. However, at doses required to attenuate nicotine self-administration, no effects of galantamine on nausea/malaise as measured by pica were noted. These results indicate that increased extracellular acetylcholine levels and/or nicotinic acetylcholine receptor stimulation is sufficient to attenuate nicotine taking and seeking in rats and that these effects are reinforcer selective and not due to adverse malaise symptoms such as nausea.
Current topics in behavioral neurosciences | 2015
Laura E. Rupprecht; Tracy T. Smith; Rachel L. Schassburger; Deanne M. Buffalari; Alan F. Sved; Eric C. Donny
Cigarette smoking is the leading cause of preventable deaths worldwide, and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus (CS), predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a CS, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness.
American Journal of Physiology-endocrinology and Metabolism | 2013
Laura E. Rupprecht; Elizabeth G. Mietlicki-Baase; Derek J. Zimmer; Lauren E. McGrath; Diana R. Olivos; Matthew R. Hayes
Glucagon-like peptide-1 (GLP-1) receptors (GLP-1R) expressed in the nucleus tractus solitarius (NTS) are physiologically required for the control of feeding. Recently, NTS GLP-1R-mediated suppression of feeding was shown to occur via a rapid PKA-induced suppression of AMPK and activation of MAPK signaling. Unknown are the additional intracellular signaling pathways that account for the long-term hypophagic effects of GLP-1R activation. Because cAMP/PKA activity can promote PI3K/PIP3-dependent translocation of Akt to the plasma membrane, we hypothesize that hindbrain GLP-1R-mediated control of feeding involves a PI3K-Akt-dependent pathway. Importantly, the novel evidence presented here challenges the dogmatic view that PI3K phosphorylation results in an obligatory activation of Akt and instead supports a growing body of literature showing that activation of cAMP/PKA can inhibit Akt phosphorylation at the plasma membrane. Behavioral data show that inhibition of hindbrain PI3K activity by a fourth icv administration of LY-294002 (3.07 μg) attenuated the food intake- and body weight-suppressive effects of a fourth icv administration of the GLP-1R agonist exendin-4 (0.3 μg) in rats. Hindbrain administration of triciribine (10 μg), an inhibitor of PIP3-dependent translocation of Akt to the cell membrane, also attenuated the intake-suppressive effects of a fourth icv injection of exendin-4. Immunoblot analyses of ex vivo NTS tissue lysates and in vitro GLP-1R-expressing neurons (GT1-7) support the behavioral findings and show that GLP-1R activation decreases phosphorylation of Akt in a time-dependent fashion. Current data reveal the requirement of PI3K activation, PIP3-dependent translocation of Akt to the plasma membrane, and suppression in phosphorylation of membrane-bound Akt to mediate the food intake-suppressive effects of hindbrain GLP-1R activation.
Drug and Alcohol Dependence | 2015
Tracy T. Smith; Matthew B. Schaff; Laura E. Rupprecht; Rachel L. Schassburger; Deanne M. Buffalari; Sharon E. Murphy; Alan F. Sved; Eric C. Donny
INTRODUCTION Although nicotine is the primary reinforcing constituent in cigarettes, there is evidence that other constituents in cigarette smoke may interact with nicotine to reinforce smoking behavior. METHODS The present experiments investigated whether a novel combination of these cigarette smoke constituents would increase nicotine self-administration in adult male rats. The constituents included five minor alkaloids (anabasine, nornicotine, cotinine, myosmine, and anatabine), two β-carbolines (harman and norharman), and acetaldehyde. All doses were indexed to be proportional to concentrations in cigarette smoke given a standard dose of nicotine used in rodent self-administration, or ten times higher than this standard. To model MAO inhibition seen in chronic smokers, some groups received separate injections of tranylcypromine prior to each self-administration session. RESULTS Tranylcypromine increased low-dose nicotine self-administration independent of other smoke constituents, which had no effect on self-administration behavior. The effect of tranylcypromine was confirmed across a large range of reinforcement schedules. The effect of tranylcypromine on low-dose nicotine self-administration was observed regardless of whether the injection was delivered 1-h or 23-h prior to the self-administration session, consistent with the interpretation that MAO inhibition was responsible for the increase in self-administration, instead of acute off-target effects. CONCLUSIONS These data suggest that this cocktail of constituents does not significantly alter the primary reinforcing effects of nicotine, but constituents that inhibit MAO may increase the primary reinforcing effects of nicotine, especially at low doses.
Addiction Biology | 2014
Blake A. Kimmey; Laura E. Rupprecht; Matthew R. Hayes; Heath D. Schmidt
Nicotine craving and cognitive impairments represent core symptoms of nicotine withdrawal and predict relapse in abstinent smokers. Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Donepezil is an acetylcholinesterase inhibitor that has been shown previously to improve cognition in healthy non–treatment‐seeking smokers. However, there are no studies examining the effects of donepezil on nicotine self‐administration and/or the reinstatement of nicotine‐seeking behavior in rodents. The present experiments were designed to determine the effects of acute donepezil administration on nicotine taking and the reinstatement of nicotine‐seeking behavior, an animal model of relapse in abstinent human smokers. Moreover, the effects of acute donepezil administration on sucrose self‐administration and sucrose seeking were also investigated in order to determine whether donepezils effects generalized to other reinforced behaviors. Acute donepezil administration (1.0 or 3.0 mg/kg, i.p.) attenuated nicotine, but not sucrose self‐administration maintained on a fixed‐ratio 5 schedule of reinforcement. Donepezil administration also dose‐dependently attenuated the reinstatement of both nicotine‐ and sucrose‐seeking behaviors. Commonly reported adverse effects of donepezil treatment in humans are nausea and vomiting. However, at doses required to attenuate nicotine self‐administration in rodents, no effects of donepezil on nausea/malaise as measured by pica were observed. Collectively, these results indicate that increased extracellular acetylcholine levels are sufficient to attenuate nicotine taking and seeking in rats and that these effects are not due to adverse malaise symptoms such as nausea.
Nicotine & Tobacco Research | 2016
Rachel L. Schassburger; Emily M. Pitzer; Tracy T. Smith; Laura E. Rupprecht; Edda Thiels; Eric C. Donny; Alan F. Sved
INTRODUCTION Although nearly 90% of current smokers initiated tobacco use during adolescence, little is known about reinforcement by nicotine in adolescents. Researchers are currently investigating whether a potential public health policy setting a tobacco product standard with very low nicotine levels would improve public health, and it is essential to understand whether data generated in adults translates to adolescents, particularly as it relates to the threshold dose of nicotine required to support smoking. The present study compared self-administration of low doses of nicotine between adolescent and adult rats. METHODS Adolescent (postnatal day [P] 30) and adult (P90) male and female rats were allowed to nosepoke to receive intravenous infusions of nicotine (3-100 μg/kg/infusion) during 16 daily 1-hour sessions. RESULTS At 10 μg/kg/infusion nicotine, adolescent rats earned significantly fewer infusions than adults. When responding for 30 μg/kg/infusion nicotine, rats of both ages earned a similar number of infusions; however, there were subtle differences in the distribution of infusions across the 1-hour session. No sex differences were apparent in either age group at any dose. CONCLUSIONS These results demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. However, at nicotine doses that support self-administration in both age groups, adolescent and adult rats do not differ in acquisition or number of infusions earned. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults may be sufficient to reduce the acquisition of smoking in adolescents. IMPLICATIONS The results of the present studies demonstrate that adolescent rats are less sensitive than adults to the primary reinforcing effects of nicotine. These results suggest that reducing nicotine levels in cigarettes to a level that does not support smoking in adults will be sufficient to reduce the acquisition of smoking in adolescents.