Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laura Signor is active.

Publication


Featured researches published by Laura Signor.


Nature Medicine | 2001

Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels

Valentin K. Gribkoff; John E. Starrett; Steven I. Dworetzky; Piyasena Hewawasam; Christopher G. Boissard; Deborah A. Cook; Stephen W. Frantz; Karen Heman; Jeffrey R. Hibbard; Kevin Huston; Graham Johnson; Bala Krishnan; Gene G. Kinney; Lynn A. Lombardo; Nicholas A. Meanwell; Perry B. Molinoff; Robert A. Myers; Sandra L. Moon; Astrid Ortiz; Lorraine Pajor; Rick L. Pieschl; Debra J. Post-Munson; Laura Signor; Nugehally Srinivas; Matthew T. Taber; George Thalody; Joanne T. Trojnacki; Harvey Wiener; Krishnaswamy Yeleswaram; Sarita W. Yeola

During ischemic stroke, neurons at risk are exposed to pathologically high levels of intracellular calcium (Ca++), initiating a fatal biochemical cascade. To protect these neurons, we have developed openers of large-conductance, Ca++-activated (maxi-K or BK) potassium channels, thereby augmenting an endogenous mechanism for regulating Ca++ entry and membrane potential. The novel fluoro-oxindoles BMS-204352 and racemic compound 1 are potent, effective and uniquely Ca++-sensitive openers of maxi-K channels. In rat models of permanent large-vessel stroke, BMS-204352 provided significant levels of cortical neuroprotection when administered two hours after the onset of occlusion, but had no effects on blood pressure or cerebral blood flow. This novel approach may restrict Ca++ entry in neurons at risk while having minimal side effects.


Journal of Medicinal Chemistry | 2008

Discovery of (R)-4-(8-fluoro-2-oxo-1,2-dihydroquinazolin-3(4H)-yl)-N-(3-(7-methyl-1H-indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide (BMS-694153): a potent antagonist of the human calcitonin gene-related peptide receptor for migraine with rapid and efficient intranasal exposure.

Andrew P. Degnan; Prasad V. Chaturvedula; Charles M. Conway; Deborah J. Cook; Carl D. Davis; Rex Denton; Xiaojun Han; Robert Macci; Neil R. Mathias; Paul Moench; Sokhom S. Pin; Shelly X. Ren; Richard Schartman; Laura Signor; George Thalody; Kimberly A. Widmann; Cen Xu; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.


Journal of Medicinal Chemistry | 2012

Discovery of (5S,6S,9R)-5-Amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): An Oral Calcitonin Gene-Related Peptide (CGRP) Antagonist in Clinical Trials for Treating Migraine

Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Laura Signor; Walter Kostich; Kimberley A. Lentz; Kenneth S. Santone; Richard Schartman; Marc Browning; Gary Tong; John G. Houston; Gene M. Dubowchik; John E. Macor

Calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine. Herein, we describe the design, synthesis, and preclinical characterization of a highly potent, oral CGRP receptor antagonist BMS-927711 (8). Compound 8 has good oral bioavailability in rat and cynomolgus monkey, attractive overall preclinical properties, and shows dose-dependent activity in a primate model of CGRP-induced facial blood flow. Compound 8 is presently in phase II clinical trials.


ACS Medicinal Chemistry Letters | 2012

Discovery of BMS-846372, a Potent and Orally Active Human CGRP Receptor Antagonist for the Treatment of Migraine.

Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Michael Gulianello; Yanling Huang; Walter Kostich; Kimberley A. Lentz; Stephen E. Mercer; Richard Schartman; Laura Signor; Marc Browning; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of (R)-N-(3-(7-methyl-1H-indazol-5-yl)-1-(4-(1-methylpiperidin-4-yl)-1-oxopropan-2-yl)-4-(2-oxo-1,2-dihydroquinolin-3-yl)piperidine-1-carboxamide (BMS-742413): a potent human CGRP antagonist with superior safety profile for the treatment of migraine through intranasal delivery.

Prasad V. Chaturvedula; Stephen E. Mercer; Sokhom S. Pin; George Thalody; Cen Xu; Charlie M. Conway; Deborah Keavy; Laura Signor; Glenn H. Cantor; Neil R. Mathias; Paul Moench; Rex Denton; Robert Macci; Richard Schartman; Valerie J. Whiterock; Carl D. Davis; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) receptor antagonists have been shown to be efficacious as abortive migraine therapeutics with the absence of cardiovascular liabilities that are associated with triptans. Herein, we report the discovery of a highly potent CGRP receptor antagonist, BMS-742413, with the potential to provide rapid onset of action through intranasal delivery. The compound displays excellent aqueous solubility, oxidative stability, and toxicological profile. BMS-742413 has good intranasal bioavailability in the rabbit and shows a robust, dose-dependent inhibition of CGRP-induced increases in marmoset facial blood flow.


Bioorganic & Medicinal Chemistry Letters | 2012

The synthesis and SAR of calcitonin gene-related peptide (CGRP) receptor antagonists derived from tyrosine surrogates. Part 1

Xiaojun Han; Rita L. Civiello; Charles M. Conway; Deborah A. Cook; Carl D. Davis; Robert Macci; Sokhom S. Pin; Shelly X. Ren; Richard Schartman; Laura Signor; George Thalody; Kimberly A. Widmann; Cen Xu; Prasad V. Chaturvedula; John E. Macor; Gene M. Dubowchik

We have systematically studied the effects of varying the central unnatural amino acid moiety on CGRP receptor antagonist potency and CYP inhibition in a series of ureidoamides. In this Letter, we report the discovery of compound 23, a potent CGRP receptor antagonist with only weak CYP3A4 inhibition. Unlike the triptans, compound 23 did not cause active constriction of ex vivo human cerebral arteries. At doses of 0.3-1 mg/kg (s.c.), 23 showed robust inhibition of CGRP-induced increases in marmoset facial blood flow, a validated migraine model. Ureidoamide 23 derives from a novel amino acid, 1H-indazol-5-yl substituted alanine as a tyrosine surrogate.


PLOS ONE | 2017

Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning

Michael R. Weed; Joseph Polino; Laura Signor; Mark Bookbinder; Deborah Keavy; Yulia Benitex; Daniel Morgan; Dalton King; John E. Macor; Robert Zaczek; Richard K. Olson; Linda J. Bristow

Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.


Journal of Pharmacology and Experimental Therapeutics | 2004

BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties.

Svetlana Tertyshnikova; Ronald J. Knox; Mary Jane Plym; George Thalody; Corinne Griffin; Torben R. Neelands; David G. Harden; Laura Signor; David R. Weaver; Robert A. Myers; Nicholas J. Lodge


Journal of Pharmacology and Experimental Therapeutics | 2004

Effect of 4-(5-chloro-2-hydroxyphenyl)-3-(2-hydroxyethyl)-6-(trifluoromethyl)-quinolin-2(1H)-one (BMS-223131), a novel opener of large conductance Ca2+-activated K+ (maxi-K) channels on normal and stress-aggravated colonic motility and visceral nociception.

Digavalli V. Sivarao; Kimberly Newberry; Shaun Langdon; Alicia V. Lee; Piyasena Hewawasam; Mary Jane Plym; Laura Signor; Robert A. Myers; Nicholas J. Lodge


Neurourology and Urodynamics | 2004

1-(2-pyrimidinyl)-piperazine, a buspirone metabolite, modulates bladder function in the anesthetized rat

Robert A. Myers; Mary Jane Plym; Laura Signor; Nicholas J. Lodge

Collaboration


Dive into the Laura Signor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cen Xu

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge