Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rex Denton is active.

Publication


Featured researches published by Rex Denton.


Journal of Pharmacology and Experimental Therapeutics | 2004

Dynamics of β-Amyloid Reductions in Brain, Cerebrospinal Fluid, and Plasma of β-Amyloid Precursor Protein Transgenic Mice Treated with a γ-Secretase Inhibitor

Donna M. Barten; Valerie Guss; Jason A. Corsa; Alice T. Loo; Steven Hansel; Ming Zheng; Benito Munoz; Kumar Srinivasan; Bowei Wang; Barbara J. Robertson; Craig Polson; Jian Wang; Susan B. Roberts; Joseph P. Hendrick; Jeffery J. Anderson; James Loy; Rex Denton; Todd A Verdoorn; David W. Smith; Kevin M. Felsenstein

γ-Secretase inhibitors are one promising approach to the development of a therapeutic for Alzheimers disease (AD). γ-Secretase inhibitors reduce brain β-amyloid peptide (Aβ), which is believed to be a major contributor in the etiology of AD. Transgenic mice overexpressing the human β-amyloid precursor protein (APP) are valuable models to examine the dynamics of Aβ changes with γ-secretase inhibitors in plaque-free and plaque-bearing animals. BMS-299897 2-[(1R)-1-[[(4-chlorophenyl)sulfony](2,5-difluorophenyl)amino]ethyl]-5-fluorobenzenepropanoic acid, a γ-secretase inhibitor, showed dose- and time dependent reductions of Aβ in brain, cerebrospinal fluid (CSF), and plasma in young transgenic mice, with a significant correlation between brain and CSF Aβ levels. Because CSF and brain interstitial fluid are distinct compartments in composition and location, this correlation could not be assumed. In contrast, aged transgenic mice with large accumulations of Aβ in plaques showed reductions in CSF Aβ in the absence of measurable changes in plaque Aβ in the brain after up to 2 weeks of treatment. Hence, CSF Aβ levels were a valuable measure of γ-secretase activity in the central nervous system in either the presence or absence of plaques. Transgenic mice were also used to examine potential side effects due to Notch inhibition. BMS-299897 was 15-fold more effective at preventing the cleavage of APP than of Notch in vitro. No changes in the maturation of CD8+ thymocytes or of intestinal goblet cells were observed in mice treated with BMS-299897, showing that it is possible for γ-secretase inhibitors to reduce brain Aβ without causing Notch-mediated toxicity.


Journal of Pharmacology and Experimental Therapeutics | 2013

Pharmacodynamics of Selective Inhibition of γ -Secretase by Avagacestat

Charles F. Albright; Randy C. Dockens; Jere E. Meredith; Richard E. Olson; Randy Slemmon; Kimberley A. Lentz; Jun-Sheng Wang; Rex Denton; Gary Pilcher; Paul Rhyne; Joseph Raybon; Donna M. Barten; Catherine R. Burton; Jeremy H. Toyn; Sethu Sankaranarayanan; Craig Polson; Valerie Guss; Randy White; Frank Simutis; Thomas P. Sanderson; Kevin W. Gillman; John E. Starrett; Joanne J. Bronson; Oleksandr Sverdlov; Shu-Pang Huang; Lorna Castaneda; Howard Feldman; Vlad Coric; Robert Zaczek; John E. Macor

A hallmark of Alzheimer’s disease (AD) pathology is the accumulation of brain amyloid β-peptide (Aβ), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aβ and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling. Avagacestat (BMS-708163) is a GSI developed for selective inhibition of APP over Notch cleavage. Avagacestat inhibition of APP and Notch cleavage was evaluated in cell culture by measuring levels of Aβ and human Notch proteins. In rats, dogs, and humans, selectivity was evaluated by measuring plasma blood concentrations in relation to effects on cerebrospinal fluid (CSF) Aβ levels and Notch-related toxicities. Measurements of Notch-related toxicity included goblet cell metaplasia in the gut, marginal-zone depletion in the spleen, reductions in B cells, and changes in expression of the Notch-regulated hairy and enhancer of split homolog-1 from blood cells. In rats and dogs, acute administration of avagacestat robustly reduced CSF Aβ40 and Aβ42 levels similarly. Chronic administration in rats and dogs, and 28-day, single- and multiple-ascending–dose administration in healthy human subjects caused similar exposure-dependent reductions in CSF Aβ40. Consistent with the 137-fold selectivity measured in cell culture, we identified doses of avagacestat that reduce CSF Aβ levels without causing Notch-related toxicities. Our results demonstrate the selectivity of avagacestat for APP over Notch cleavage, supporting further evaluation of avagacestat for AD therapy.


Journal of Medicinal Chemistry | 2009

A strategy to minimize reactive metabolite formation: discovery of (S)-4-(1-cyclopropyl-2-methoxyethyl)-6-[6-(difluoromethoxy)-2,5-dimethylpyridin-3-ylamino]-5-oxo-4,5-dihydropyrazine-2-carbonitrile as a potent, orally bioavailable corticotropin-releasing factor-1 receptor antagonist.

Richard A. Hartz; Vijay T. Ahuja; Xiaoliang Zhuo; Ronald J. Mattson; Derek J. Denhart; Jeffrey A. Deskus; Senliang Pan; Jonathan L. Ditta; Yue-Zhong Shu; James E. Grace; Kimberley A. Lentz; Snjezana Lelas; Yu-Wen Li; Thaddeus F. Molski; Subramaniam Krishnananthan; Henry Wong; Jingfang Qian-Cutrone; Richard Schartman; Rex Denton; Nicholas J. Lodge; Robert Zaczek; John E. Macor; Joanne J. Bronson

Detailed metabolic characterization of 8, an earlier lead pyrazinone-based corticotropin-releasing factor-1 (CRF(1)) receptor antagonist, revealed that this compound formed significant levels of reactive metabolites, as measured by in vivo and in vitro biotransformation studies. This was of particular concern due to the body of evidence suggesting that reactive metabolites may be involved in idiosyncratic drug reactions. Further optimization of the structure-activity relationships and in vivo properties of pyrazinone-based CRF(1) receptor antagonists and studies to assess the formation of reactive metabolites led to the discovery of 19e, a high affinity CRF(1) receptor antagonist (IC(50) = 0.86 nM) wherein GSH adducts were estimated to be only 0.1% of the total amount of drug-related material excreted through bile and urine, indicating low levels of reactive metabolite formation in vivo. A novel 6-(difluoromethoxy)-2,5-dimethylpyridin-3-amine group in 19e contributed to the potency and improved in vivo properties of this compound and related analogues. 19e had excellent pharmacokinetic properties in rats and dogs and showed efficacy in the defensive withdrawal model of anxiety in rats. The lowest efficacious dose was 1.8 mg/kg. The results of a two-week rat safety study with 19e indicated that this compound was well-tolerated.


Journal of Medicinal Chemistry | 2008

Discovery of (R)-4-(8-fluoro-2-oxo-1,2-dihydroquinazolin-3(4H)-yl)-N-(3-(7-methyl-1H-indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide (BMS-694153): a potent antagonist of the human calcitonin gene-related peptide receptor for migraine with rapid and efficient intranasal exposure.

Andrew P. Degnan; Prasad V. Chaturvedula; Charles M. Conway; Deborah J. Cook; Carl D. Davis; Rex Denton; Xiaojun Han; Robert Macci; Neil R. Mathias; Paul Moench; Sokhom S. Pin; Shelly X. Ren; Richard Schartman; Laura Signor; George Thalody; Kimberly A. Widmann; Cen Xu; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) has been implicated in the pathogenesis of migraine. Early chemistry leads suffered from modest potency, significant CYP3A4 inhibition, and poor aqueous solubility. Herein, we describe the optimization of these leads to give 4 (BMS-694153), a molecule with outstanding potency, a favorable predictive toxicology profile, and remarkable aqueous solubility. Compound 4 has good intranasal bioavailability in rabbits and shows dose-dependent activity in validated in vivo and ex vivo migraine models.


Journal of Medicinal Chemistry | 2012

Discovery of (5S,6S,9R)-5-Amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carboxylate (BMS-927711): An Oral Calcitonin Gene-Related Peptide (CGRP) Antagonist in Clinical Trials for Treating Migraine

Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Laura Signor; Walter Kostich; Kimberley A. Lentz; Kenneth S. Santone; Richard Schartman; Marc Browning; Gary Tong; John G. Houston; Gene M. Dubowchik; John E. Macor

Calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine. Herein, we describe the design, synthesis, and preclinical characterization of a highly potent, oral CGRP receptor antagonist BMS-927711 (8). Compound 8 has good oral bioavailability in rat and cynomolgus monkey, attractive overall preclinical properties, and shows dose-dependent activity in a primate model of CGRP-induced facial blood flow. Compound 8 is presently in phase II clinical trials.


ACS Medicinal Chemistry Letters | 2012

Discovery of BMS-846372, a Potent and Orally Active Human CGRP Receptor Antagonist for the Treatment of Migraine.

Guanglin Luo; Ling Chen; Charles M. Conway; Rex Denton; Deborah Keavy; Michael Gulianello; Yanling Huang; Walter Kostich; Kimberley A. Lentz; Stephen E. Mercer; Richard Schartman; Laura Signor; Marc Browning; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) receptor antagonists have been clinically shown to be effective in the treatment of migraine, but identification of potent and orally bioavailable compounds has been challenging. Herein, we describe the conceptualization, synthesis, and preclinical characterization of a potent, orally active CGRP receptor antagonist 5 (BMS-846372). Compound 5 has good oral bioavailability in rat, dog, and cynomolgus monkeys and overall attractive preclinical properties including strong (>50% inhibition) exposure-dependent in vivo efficacy in a marmoset migraine model.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of (R)-N-(3-(7-methyl-1H-indazol-5-yl)-1-(4-(1-methylpiperidin-4-yl)-1-oxopropan-2-yl)-4-(2-oxo-1,2-dihydroquinolin-3-yl)piperidine-1-carboxamide (BMS-742413): a potent human CGRP antagonist with superior safety profile for the treatment of migraine through intranasal delivery.

Prasad V. Chaturvedula; Stephen E. Mercer; Sokhom S. Pin; George Thalody; Cen Xu; Charlie M. Conway; Deborah Keavy; Laura Signor; Glenn H. Cantor; Neil R. Mathias; Paul Moench; Rex Denton; Robert Macci; Richard Schartman; Valerie J. Whiterock; Carl D. Davis; John E. Macor; Gene M. Dubowchik

Calcitonin gene-related peptide (CGRP) receptor antagonists have been shown to be efficacious as abortive migraine therapeutics with the absence of cardiovascular liabilities that are associated with triptans. Herein, we report the discovery of a highly potent CGRP receptor antagonist, BMS-742413, with the potential to provide rapid onset of action through intranasal delivery. The compound displays excellent aqueous solubility, oxidative stability, and toxicological profile. BMS-742413 has good intranasal bioavailability in the rabbit and shows a robust, dose-dependent inhibition of CGRP-induced increases in marmoset facial blood flow.


Journal of Pharmacology and Experimental Therapeutics | 2016

Robust Translation of γ-Secretase Modulator Pharmacology across Preclinical Species and Human Subjects

Jeremy H. Toyn; Kenneth M. Boy; Joseph Raybon; Jere E. Meredith; Alan S. Robertson; Valerie Guss; Nina Hoque; Francis Sweeney; Xiaoliang Zhuo; Wendy Clarke; Kimberly Snow; Rex Denton; Dmitry Zuev; Lorin A. Thompson; John Morrison; James E. Grace; Flora Berisha; Michael T. Furlong; Jun-Sheng Wang; Kimberly A. Lentz; Ramesh Padmanabha; Lynda S. Cook; Cong Wei; Dieter M. Drexler; John E. Macor; Charlie F. Albright; Maciej Gasior; Richard E. Olson; Quan Hong; Holly Soares

The amyloid-β peptide (Aβ)—in particular, the 42–amino acid form, Aβ1-42—is thought to play a key role in the pathogenesis of Alzheimer’s disease (AD). Thus, several therapeutic modalities aiming to inhibit Aβ synthesis or increase the clearance of Aβ have entered clinical trials, including γ-secretase inhibitors, anti-Aβ antibodies, and amyloid-β precursor protein cleaving enzyme inhibitors. A unique class of small molecules, γ-secretase modulators (GSMs), selectively reduce Aβ1-42 production, and may also decrease Aβ1-40 while simultaneously increasing one or more shorter Aβ peptides, such as Aβ1-38 and Aβ1-37. GSMs are particularly attractive because they do not alter the total amount of Aβ peptides produced by γ-secretase activity; they spare the processing of other γ-secretase substrates, such as Notch; and they do not cause accumulation of the potentially toxic processing intermediate, β-C-terminal fragment. This report describes the translation of pharmacological activity across species for two novel GSMs, (S)-7-(4-fluorophenyl)-N2-(3-methoxy-4-(3-methyl-1H-1,2,4-triazol-1-yl)phenyl)-N4-methyl-6,7-dihydro-5H-cyclopenta[d]pyrimidine-2,4-diamine (BMS-932481) and (S,Z)-17-(4-chloro-2-fluorophenyl)-34-(3-methyl-1H-1,2,4-triazol-1-yl)-16,17-dihydro-15H-4-oxa-2,9-diaza-1(2,4)-cyclopenta[d]pyrimidina-3(1,3)-benzenacyclononaphan-6-ene (BMS-986133). These GSMs are highly potent in vitro, exhibit dose- and time-dependent activity in vivo, and have consistent levels of pharmacological effect across rats, dogs, monkeys, and human subjects. In rats, the two GSMs exhibit similar pharmacokinetics/pharmacodynamics between the brain and cerebrospinal fluid. In all species, GSM treatment decreased Aβ1-42 and Aβ1-40 levels while increasing Aβ1-38 and Aβ1-37 by a corresponding amount. Thus, the GSM mechanism and central activity translate across preclinical species and humans, thereby validating this therapeutic modality for potential utility in AD.


Journal of Pharmacology and Experimental Therapeutics | 2016

Inhibition of AAK1 Kinase as a Novel Therapeutic Approach to Treat Neuropathic Pain

W. Kostich; B. D. Hamman; Y.-W. Li; S. Naidu; K. Dandapani; J. Feng; A. Easton; C. Bourin; K. Baker; J. Allen; K. Savelieva; J. V. Louis; M. Dokania; S. Elavazhagan; P. Vattikundala; V. Sharma; M. L. Das; G. Shankar; A. Kumar; Vinay K. Holenarsipur; M. Gulianello; Thaddeus F. Molski; Jeffrey M. Brown; Martin A. Lewis; Yazhong Huang; Y. Lu; Rick L. Pieschl; K. OMalley; J. Lippy; A. Nouraldeen

To identify novel targets for neuropathic pain, 3097 mouse knockout lines were tested in acute and persistent pain behavior assays. One of the lines from this screen, which contained a null allele of the adapter protein-2 associated kinase 1 (AAK1) gene, had a normal response in acute pain assays (hot plate, phase I formalin), but a markedly reduced response to persistent pain in phase II formalin. AAK1 knockout mice also failed to develop tactile allodynia following the Chung procedure of spinal nerve ligation (SNL). Based on these findings, potent, small-molecule inhibitors of AAK1 were identified. Studies in mice showed that one such inhibitor, LP-935509, caused a reduced pain response in phase II formalin and reversed fully established pain behavior following the SNL procedure. Further studies showed that the inhibitor also reduced evoked pain responses in the rat chronic constriction injury (CCI) model and the rat streptozotocin model of diabetic peripheral neuropathy. Using a nonbrain-penetrant AAK1 inhibitor and local administration of an AAK1 inhibitor, the relevant pool of AAK1 for antineuropathic action was found to be in the spinal cord. Consistent with these results, AAK1 inhibitors dose-dependently reduced the increased spontaneous neural activity in the spinal cord caused by CCI and blocked the development of windup induced by repeated electrical stimulation of the paw. The mechanism of AAK1 antinociception was further investigated with inhibitors of α2 adrenergic and opioid receptors. These studies showed that α2 adrenergic receptor inhibitors, but not opioid receptor inhibitors, not only prevented AAK1 inhibitor antineuropathic action in behavioral assays, but also blocked the AAK1 inhibitor–induced reduction in spinal neural activity in the rat CCI model. Hence, AAK1 inhibitors are a novel therapeutic approach to neuropathic pain with activity in animal models that is mechanistically linked (behaviorally and electrophysiologically) to α2 adrenergic signaling, a pathway known to be antinociceptive in humans.


International Journal of Alzheimer's Disease | 2014

Identification and Preclinical Pharmacology of the γ-Secretase Modulator BMS-869780.

Jeremy H. Toyn; Lorin A. Thompson; Kimberley A. Lentz; Jere E. Meredith; Catherine R. Burton; Sethu Sankaranararyanan; Valerie Guss; Tracey Hall; Lawrence G. Iben; Carol M. Krause; Rudy Krause; Xu-Alan Lin; Maria Pierdomenico; Craig Polson; Alan S. Robertson; Rex Denton; James E. Grace; John Morrison; Joseph Raybon; Xiaoliang Zhuo; Kimberly Snow; Ramesh Padmanabha; Michele Agler; Kim Esposito; David G. Harden; Margaret M Prack; Sam Varma; Victoria Wong; Yingjie Zhu; Tatyana Zvyaga

Alzheimers disease is the most prevalent cause of dementia and is associated with accumulation of amyloid-β peptide (Aβ), particularly the 42-amino acid Aβ1-42, in the brain. Aβ1-42 levels can be decreased by γ-secretase modulators (GSM), which are small molecules that modulate γ-secretase, an enzyme essential for Aβ production. BMS-869780 is a potent GSM that decreased Aβ1-42 and Aβ1-40 and increased Aβ1-37 and Aβ1-38, without inhibiting overall levels of Aβ peptides or other APP processing intermediates. BMS-869780 also did not inhibit Notch processing by γ-secretase and lowered brain Aβ1-42 without evidence of Notch-related side effects in rats. Human pharmacokinetic (PK) parameters were predicted through allometric scaling of PK in rat, dog, and monkey and were combined with the rat pharmacodynamic (PD) parameters to predict the relationship between BMS-869780 dose, exposure and Aβ1-42 levels in human. Off-target and safety margins were then based on comparisons to the predicted exposure required for robust Aβ1-42 lowering. Because of insufficient safety predictions and the relatively high predicted human daily dose of 700 mg, further evaluation of BMS-869780 as a potential clinical candidate was discontinued. Nevertheless, BMS-869780 demonstrates the potential of the GSM approach for robust lowering of brain Aβ1-42 without Notch-related side effects.

Collaboration


Dive into the Rex Denton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge