Laure Menin
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laure Menin.
Immunological Reviews | 2004
Philippe Bulet; Reto Stöcklin; Laure Menin
Summary: Gene‐encoded anti‐microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an α‐helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open‐ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over‐representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25–30 kDa, and adopt an amphipathic structure (α‐helix, β‐hairpin‐like β‐sheet, β‐sheet, or α‐helix/β‐sheet mixed structures) that is believed to be essential to their anti‐microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming α‐helices, β‐hairpin‐like β‐sheets, β‐sheets, or α‐helix/β‐sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Immunity | 2015
Mario M. Zaiss; Alexis Rapin; Luc Lebon; Lalit Kumar Dubey; Ilaria Mosconi; Kerstin Sarter; Alessandra Piersigilli; Laure Menin; Alan W. Walker; Jacques Rougemont; Oonagh Paerewijck; Peter Geldhof; Kathleen McCoy; Andrew J. Macpherson; John Croese; Paul Giacomin; Alex Loukas; Tobias Junt; Benjamin J. Marsland; Nicola L. Harris
Summary Intestinal helminths are potent regulators of their host’s immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production. Transfer of the Hpb-modified microbiota alone was sufficient to mediate protection against allergic asthma. The helminth-induced anti-inflammatory cytokine secretion and regulatory T cell suppressor activity that mediated the protection required the G protein-coupled receptor (GPR)-41. A similar alteration in the metabolic potential of intestinal bacterial communities was observed with diverse parasitic and host species, suggesting that this represents an evolutionary conserved mechanism of host-microbe-helminth interactions.
Environmental Science & Technology | 2010
Krista Wigginton; Laure Menin; Jonathan Paz Montoya; Tamar Kohn
Despite the widespread use of UV(254) irradiation and solar disinfection for water treatment, little is known about the photochemical pathways that lead to virus inactivation by these treatments. The goal of this study was to identify reactions that occur in virus capsid proteins upon treatment by UV(254) irradiation and (1)O(2), an important oxidant involved in sunlight-mediated disinfection. Bacteriophage MS2 was inactivated via UV(254) irradiation and exposure to (1)O(2) in buffered water, and their capsid proteins were then analyzed with MALDI-TOF-TOF and ESI-TOF before and after digestion with protease enzymes. The results demonstrate that chemical modifications occur in the MS2 major capsid protein with both treatments. One oxidation event was detected following (1)O(2) treatment in an amino acid residue located on the capsid outer surface. UV(254) treatment caused three chemical reactions in the capsid proteins, two of which were oxidation reactions with residues on the capsid outer surface. A site-specific cleavage also occurred with UV(254) irradiation at a protein chain location on the inside face of the capsid shell. We attribute this UV(254) induced protein scission, which is nearly unprecedented in the literature, to a close association between the affected residues and viral RNA, an efficient UV(254) absorber. These results suggest that viral protein oxidation by UV(254) and (1)O(2) may play a role in virus inactivation and that viral inactivation may be tracked with mass spectrometric measurements.
Toxicon | 2008
Laure Menin; Anna Maria Perchuc; Philippe Favreau; Frédéric Perret; Sophie Michalet; Reto Schöni; Marianne Wilmer; Reto Stöcklin
Snake venoms are known to be an extensive source of bioactive peptides. Bradykinin-potentiating peptides (BPPs) are inhibitors of the angiotensin-converting enzyme that have already been identified in the venom of many snake, scorpion, spider and batrachian species. Their most characteristic structural features are an invariable N-terminal pyroglutamate residue (pGlu or Z) and two consecutive proline residues at the C-terminus. Fragmentation of BPPs by collision-induced dissociation during electrospray tandem mass spectrometry analysis (ESI-MS/MS) generates a predominant signal at m/z 213.1 corresponding to the y-ion of the terminal Pro-Pro fragment. In addition, signals at m/z 226.1 and 240.1 that correspond to the b ions of the N-terminus pGlu-Asn and pGlu-Lys, respectively, can often be observed. Based on these structural determinants, the present work describes an original methodology for the discovery of BPPs in natural extracts using liquid chromatography coupled to ESI-MS/MS operated in precursor ion-scan mode. The venom of the Bothrops moojeni snake was used as a model and the methodology was applied for subsequent structural analysis of the identified precursors by tandem mass spectrometry on quadrupole-time-of-flight (Q-TOF) and matrix-assisted laser-desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS) instruments. More than 40 peptides below 2500 Da could be detected, among them 20 were shown to belong to the BPP-like family including the related tripeptides pGlu-Lys-Trp and pGlu-Asn-Trp. A total of 15 new sequences have been identified using this approach.
Chemical Science | 2014
Benjamin S. Murray; Laure Menin; Rosario Scopelliti; Paul J. Dyson
Dinuclear metal complexes have emerged as a promising class of biologically active compounds which possess unique anticancer activity. Here, we describe a novel series of arene-linked dinuclear organometallic Ru(II) complexes, where the relative conformation of the ruthenium centres is controlled by the stereochemical configuration of 1,2-diphenylethylenediamine linker moieties, as confirmed by X-ray crystallography. The reactivity and cytotoxicity of these compounds is compared to flexible dinuclear and mononuclear analogues, demonstrating in all cases the complexes can undergo aquation, coordinate to typical biological donor ligands and importantly, in the case of dinuclear analogues, crosslink oligonucleotide and peptide sequences. Differences in the conformation of the isomeric dinuclear compounds lead to significantly different levels of cytotoxicity against A2780, A2780cisR and HEK-293 cell lines; isomers with a closed conformation are significantly more cytotoxic than isomers with a more open conformation and they are also significantly less susceptible to acquired resistance mechanisms operating in the A2780cisR cell line. These rigid dinuclear compounds possess markedly increased cytotoxicity relative to the non-cytotoxic mononuclear analogues that does not appear to be related to differences in complex lipophilicity or cellular uptake, which, in general, remain similar in magnitude across the series. Thus, the molecular conformation of such dinuclear species may be crucial in determining the nature of the adducts formed on coordination to biological targets in a cellular environment, and opens up a novel route toward the development of more active metal-based anticancer agents.
Frontiers in Cellular and Infection Microbiology | 2016
Nicolas Studer; Lyne Desharnais; Markus Beutler; Sandrine Brugiroux; Miguel A. Terrazos; Laure Menin; Christian Schürch; Kathy D. McCoy; Sarah A. Kuehne; Nigel P. Minton; Bärbel Stecher; Rizlan Bernier-Latmani; Siegfried Hapfelmeier
Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile. Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens. Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo. Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species “oligo-mouse microbiota” (Oligo-MM12). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7α-dehydroxylation. These changes had only minor effects on the composition of the native Oligo-MM12, but significantly decreased early large intestinal C. difficile colonization and pathogenesis. The delayed pathogenesis of C. difficile in C. scindens-colonized mice was associated with breakdown of cecal microbial bile acid transformation.
Protein Science | 2004
Céline Landon; Florent Barbault; Michèle Legrain; Laure Menin; Marc Guenneugues; Valérie Schott; Françoise Vovelle; Jean-Luc Dimarcq
Antimicrobial peptides are key components of the innate immune response in most multicellular organisms. These molecules are considered as one of the most innovative class of anti‐infective agents that have been discovered over the last two decades, and therefore, as a source of inspiration for novel drug design. Insect cystein‐rich antimicrobial peptides with the CSαβ scaffold (an α‐helix linked to a β‐sheet by two disulfide bridges) represent particularly attractive templates for the development of systemic agents owing to their remarkable resistance to protease degradation. We have selected heliomicin, a broad spectrum antifungal CSαβ peptide from Lepidoptera as the starting point of a lead optimization program based on phylogenic exploration and fine tuned mutagenesis. We report here the characterization, biological activity, and 3D structure of heliomicin improved analogs, namely the peptides ARD1, ETD‐135, and ETD‐151. The ARD1 peptide was initially purified from the immune hemolymph of the caterpillars of Archeoprepona demophoon. Although it differs from heliomicin by only two residues, it was found to be more active against the human pathogens Aspergillus fumigatus and Candida albicans. The peptides ETD‐135 and ETD‐151 were engineered by site‐directed mutagenesis of ARD1 in either cationic or hydrophobic regions. ETD‐135 and ETD‐151 demonstrated an improved antifungal activity over the native peptides, heliomicin and ARD1. A comparative analysis of the 3D structure of the four molecules highlighted the direct impact of the modification of the amphipathic properties on the molecule potency. In addition, it allowed to characterize an optimal organization of cationic and hydrophobic regions to achieve best antifungal activity.
eLife | 2016
Adria C. LeBoeuf; Patrice Waridel; Colin S. Brent; Andre N Gonçalves; Laure Menin; Daniel Ortiz; Akiko Koto; Zamira G Soares; Eyal Privman; Eric A. Miska; Richard Benton; Laurent Keller
Social insects frequently engage in oral fluid exchange – trophallaxis – between adults, and between adults and larvae. Although trophallaxis is widely considered a food-sharing mechanism, we hypothesized that endogenous components of this fluid might underlie a novel means of chemical communication between colony members. Through protein and small-molecule mass spectrometry and RNA sequencing, we found that trophallactic fluid in the ant Camponotus floridanus contains a set of specific digestion- and non-digestion related proteins, as well as hydrocarbons, microRNAs, and a key developmental regulator, juvenile hormone. When C. floridanus workers’ food was supplemented with this hormone, the larvae they reared via trophallaxis were twice as likely to complete metamorphosis and became larger workers. Comparison of trophallactic fluid proteins across social insect species revealed that many are regulators of growth, development and behavioral maturation. These results suggest that trophallaxis plays previously unsuspected roles in communication and enables communal control of colony phenotypes.
Pathophysiology of Haemostasis and Thrombosis | 2005
Anna Maria Perchuc; Laure Menin; Reto Stöcklin; Beatrice Bühler; Reto Schöni
Early studies in the 1930s on the venom of South American Lancehead snakesofthe Bothrops genuslead to the discovery of compounds active in blood coagulation such as batroxobin and botrocetin. The scope of our investigations is to have a deeper look at the crude venom of B. moojeni using state-of-the-art proteomics methods, as well as newly developed bioassays screening for activities in the different fields of application. The proteomics techniques used up to now have included different chromatography methods, mass spectrometry, and bio-computing. The bioassays are focussed on enzymatic and other activities in the field of hemostasis and fibrinolysis. Besides the known activities several new and interesting ones have been found. They still need to be studied and confirmed in more specific supplementary assays.
ChemBioChem | 2012
Krista Wigginton; Laure Menin; Therese Sigstam; Greg Gannon; Michele Cascella; Hisham Ben Hamidane; Yury O. Tsybin; Patrice Waridel; Tamar Kohn
Much research has been dedicated to understanding the molecular basis of UV damage to biomolecules, yet many questions remain regarding the specific pathways involved. Here we describe a genome‐mediated mechanism that causes site‐specific virus protein cleavage upon UV irradiation. Bacteriophage MS2 was disinfected with 254 nm UV, and protein damage was characterized with ESI‐ and MALDI‐based FT‐ICR, Orbitrap, and TOF mass spectroscopy. Top‐down mass spectrometry of the products identified the backbone cleavage site as Cys46–Ser47 in the virus capsid protein, a location of viral genome–protein interaction. The presence of viral RNA was essential to inducing backbone cleavage. The similar bacteriophage GA did not exhibit site‐specific protein cleavage. Based on the major protein fragments identified by accurate mass analysis, a cleavage mechanism is proposed by radical formation. The mechanism involves initial oxidation of the Cys46 side chain followed by hydrogen atom abstraction from Ser47 Cα. Computational protein QM/MM studies confirmed the initial steps of the radical mechanism. Collectively, this study describes a rare incidence of genome‐induced protein cleavage without the addition of sensitizers.