Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurel Pfeifer-Meister is active.

Publication


Featured researches published by Laurel Pfeifer-Meister.


Nature | 2016

Quantifying global soil carbon losses in response to warming

Thomas W. Crowther; Katherine Todd-Brown; C. W. Rowe; William R. Wieder; Joanna C. Carey; Megan B. Machmuller; L. Basten Snoek; Shibo Fang; Guangsheng Zhou; Steven D. Allison; John M. Blair; Scott D. Bridgham; Andrew J. Burton; Yolima Carrillo; Peter B. Reich; James S. Clark; Aimée T. Classen; Feike A. Dijkstra; Bo Elberling; Bridget A. Emmett; Marc Estiarte; Serita D. Frey; Jixun Guo; John Harte; Lifen Jiang; Bart R. Johnson; György Kröel-Dulay; Klaus Steenberg Larsen; Hjalmar Laudon; Jocelyn M. Lavallee

The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12–17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon–climate feedback that could accelerate climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Temperature response of soil respiration largely unaltered with experimental warming

Joanna C. Carey; Jianwu Tang; Pamela H. Templer; Kevin D. Kroeger; Thomas W. Crowther; Andrew J. Burton; Jeffrey S. Dukes; Bridget A. Emmett; Serita D. Frey; Mary A. Heskel; Lifen Jiang; Megan B. Machmuller; Jacqueline E. Mohan; Anne Marie Panetta; Peter B. Reich; Sabine Reinsch; Xin Wang; Steven D. Allison; Chris Bamminger; Scott D. Bridgham; Scott L. Collins; Giovanbattista de Dato; William C. Eddy; Brian J. Enquist; Marc Estiarte; John Harte; Amanda N. Henderson; Bart R. Johnson; Klaus Steenberg Larsen; Yiqi Luo

Significance One of the greatest challenges in projecting future shifts in the global climate is understanding how soil respiration rates will change with warming. Multiple experimental warming studies have explored this response, but no consensus has been reached. Based on a global synthesis of 27 experimental warming studies spanning nine biomes, we find that although warming increases soil respiration rates, there is limited evidence for a shifting respiration response with experimental warming. We also note a universal decline in the temperature sensitivity of respiration at soil temperatures >25 °C. Together, our data indicate that future respiration rates are likely to follow the current temperature response function, but higher latitudes will be more responsive to warmer temperatures. The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.


Oecologia | 2008

Abiotic constraints on the competitive ability of exotic and native grasses in a Pacific Northwest prairie

Laurel Pfeifer-Meister; Esther M. Cole; Bitty A. Roy; Scott D. Bridgham

In prairie ecosystems, abiotic constraints on competition can structure plant communities; however, the extent to which competition between native and exotic plant species is constrained by environmental factors is still debated. The objective of our study was to use paired field and greenhouse experiments to evaluate the competitive dynamics between two native (Danthonia californica and Deschampsia cespitosa) and two exotic (Schedonorus arundinaceus and Lolium multiflorum) grass species under varying nutrient and moisture conditions in an upland prairie in the Willamette Valley, Oregon. We hypothesized the two invasive, exotic grasses would be more competitive under high-nutrient, moderate-moisture conditions, resulting in the displacement of native grasses from these environments. In the field, the experimental reduction of competition resulted in shorter, wider plants, but only the annual grass, Lolium multiflorum, produced more aboveground biomass when competition was reduced. In the greenhouse, the two exotic grasses produced more total biomass than the two native grasses. Competitive hierarchies were influenced by nutrient and/or moisture treatments for the two exotic grasses, but not for the two native grasses. L. multiflorum dominated competitive interactions with all other grasses across treatments. In general, S. arundinaceus dominated when in competition with native grasses, and D. cespitosa produced the most biomass in monoculture or under interspecific competition with the other native grass, D. californica. D. californica, D. cespitosa, and S. arundinaceus all produced more biomass in high-moisture, high-nutrient environments, and D. cespitosa, L. multiflorum, and S. arundinaceus allocated more biomass belowground in the low nutrient treatment. Taken together, these experiments suggest the competitive superiority of the exotic grasses, especially L. multiflorum, but, contrary to our hypothesis, the native grasses were not preferentially excluded from nutrient-rich, moderately wet environments.


Nature Communications | 2016

Stability of peatland carbon to rising temperatures

Rachel M. Wilson; A. M. Hopple; Malak M. Tfaily; S. D. Sebestyen; Christopher W. Schadt; Laurel Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; Joel E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; Jason K. Keller; T. P. Guilderson; N. A. Griffiths; Jeffrey P. Chanton; Scott D. Bridgham; Paul J. Hanson

Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. There are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. These results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.


PeerJ | 2016

Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient.

Hannah E. Wilson; Bart R. Johnson; Brendan J. M. Bohannan; Laurel Pfeifer-Meister; Rebecca C. Mueller; Scott D. Bridgham

Background: Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. Methods: We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Results: Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. Discussion: A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.


PeerJ | 2015

The herbaceous landlord: integrating the effects of symbiont consortia within a single host

Roo Vandegrift; Bitty A. Roy; Laurel Pfeifer-Meister; Bart R. Johnson; Scott D. Bridgham

Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grass Agrostis capillaris in the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genus Epichloë, and we measured percent root length colonized (PRLC) by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitness cost to increasing DSE colonization, which was negated by presence of Epichloë endophytes. These results suggest that selective pressure on the host is likely to favor host/symbiont relationships that structure the community of symbionts in the most beneficial way possible for the host, not necessarily favoring the individual symbiont that is most beneficial to the host in isolation. These results highlight the need for a more integrative, systems approach to the study of host/symbiont consortia.


Global Change Biology | 2016

Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA

Laurel Pfeifer-Meister; Scott D. Bridgham; Lorien L. Reynolds; Maya E. Goklany; Hannah E. Wilson; Chelsea J. Little; Aryana Ferguson; Bart R. Johnson

Projected changes in climate are expected to have widespread effects on plant community composition and diversity in coming decades. However, multisite, multifactor climate manipulation studies that have examined whether observed responses are regionally consistent and whether multiple climate perturbations are interdependent are rare. Using such an experiment, we quantified how warming and increased precipitation intensity affect the relative dominance of plant functional groups and diversity across a broad climate gradient of Mediterranean prairies. We implemented a fully factorial climate manipulation of warming (+2.5-3.0 °C) and increased wet-season precipitation (+20%) at three sites across a 520-km latitudinal gradient in the Pacific Northwest, USA. After seeding with a nearly identical mix of native species at all sites, we measured plant community composition (i.e., cover, richness, and diversity), temperature, and soil moisture for 3 years. Warming and the resultant drying of soils altered plant community composition, decreased native diversity, and increased total cover, with warmed northern communities becoming more similar to communities further south. In particular, after two full years of warming, annual cover increased and forb cover decreased at all sites mirroring the natural biogeographic pattern. This suggests that the extant climate gradient of increasing heat and drought severity is responsible for a large part of the observed biogeographic pattern of increasing annual invasion in US West Coast prairies as one moves further south. Additional precipitation during the rainy season did little to relieve drought stress and had minimal effects on plant community composition. Our results suggest that the projected increase in drought severity (i.e., hotter, drier summers) in Pacific Northwest prairies may lead to increased invasion by annuals and a loss of forbs, similar to what has been observed in central and southern California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem functions.


PeerJ | 2018

Greenhouse gas emissions limited by low nitrogen and carbon availability in natural, restored, and agricultural Oregon seasonal wetlands

Laurel Pfeifer-Meister; Laura G. Gayton; Bitty A. Roy; Bart R. Johnson; Scott D. Bridgham

Wetlands are the major natural source of the greenhouse gas methane (CH4) and are also potentially an important source of nitrous oxide (N2O), though there is considerable variability among wetland types with some of the greatest uncertainty in freshwater mineral-soil wetlands. In particular, trace gas emissions from seasonal wetlands have been very poorly studied. We measured fluxes of CH4, N2O, and CO2(carbon dioxide), soil nutrients, and net primary productivity over one year in natural, restored, and agricultural seasonal wetland prairies in the Willamette Valley, Oregon, USA. We found zero fluxes for CH4 and N2O, even during periods of extended waterlogging of the soil. To explore this lack of emissions, we performed a laboratory experiment to examine the controls over these gases. In a fully-factorial design, we amended anaerobic soils from all wetlands with nitrate, glucose, and NaOH (to neutralize pH) and measured production potentials of N2, N2O, CH4, and CO2. We found that denitrification and N2O production were co-limited by nitrate and carbon, with little difference between the three wetland types. This co-limitation suggests that low soil carbon availability will continue to constrain N2O emissions and denitrification in these systems even when receiving relatively high levels of nitrogen inputs. Contrary to the results for N2O, the amended wetland soils never produced significant amounts of CH4 under any treatment. We hypothesize that high concentrations of alternative electron acceptors exist in these soils so that methanogens are noncompetitive with other microbial groups. As a result, these wetlands do not appear to be a significant source or sink of soil carbon and thus have a near zero climate forcing effect. Future research should focus on determining if this is a generalizable result in other seasonal wetlands.


Biogeochemistry | 2018

Small differences in ombrotrophy control regional-scale variation in methane cycling among Sphagnum-dominated peatlands

C. Zalman; Jason K. Keller; Malak M. Tfaily; M. Kolton; Laurel Pfeifer-Meister; Rachel M. Wilson; X. Lin; Jeffrey P. Chanton; Joel E. Kostka; Allison L. Gill; Adrien C. Finzi; A. M. Hopple; Brendan J. M. Bohannan; Scott D. Bridgham

Although methane (CH4) dynamics are known to differ at broad scales among peatland types and with climate, there is limited understanding of the variability associated with anaerobic carbon (C) cycling, and, the mechanisms that control that variability, among low pH, Sphagnum moss-dominated peatlands within a geographical region with similar climate. This is important because upscaling of CH4 emissions to regional and global scales often considers peatlands as a single, or at most two, ecosystem type(s). Here, we report the results from two studies exploring the controls of CH4 cycling in peatlands from the Upper Midwest (USA). Potential CH4 production and resultant CO2:CH4 ratios varied by several orders-of-magnitude among these soils. These differences were only partially explained by pH and fiber content (a measure of degree of decomposition in peat), suggesting other, more complicated controls may drive CH4 cycling in ombrotrophic peat soils. Based in part on the results from this survey, we more intensively examined CH4 dynamics in three bog-like, acidic, Sphagnum-dominated peatlands in northern Minnesota that differed in their degree of ombrotrophy. Net CH4 flux was lowest in the peatland with well-developed hummocks, and the isotopic composition of the CH4 along with methanotroph gene expression indicated a strong role for CH4 oxidation in controlling net CH4 flux. There were limited differences in porewater chemistry (CH4 and dissolved inorganic C concentrations) or microbial community composition among sites, and potential CH4 production was also similar among the sites. Taken together, these experiments demonstrate that high variation in CH4 cycling in seemingly similar peatlands within a single geographical region is common. We suggest a one peatland represents all approach is inappropriate—even among Sphagnum-dominated peatlands—and caution must be used when extrapolating data from a single site to the landscape scale, even for outwardly very similar peatlands. Instead, the macroscale development of peatlands, and concomitantly their microtopography as expressed in the proportion of hummocks, hollows, lawns and pools, need to be considered as central controls over CH4 emissions.


PLOS ONE | 2015

An exploration of hypotheses that explain herbivore and pathogen attack in restored plant communities.

G. Kai Blaisdell; Bitty A. Roy; Laurel Pfeifer-Meister; Scott D. Bridgham

Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack.

Collaboration


Dive into the Laurel Pfeifer-Meister's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel E. Kostka

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malak M. Tfaily

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Burton

Michigan Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge