Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel M. Wilson is active.

Publication


Featured researches published by Rachel M. Wilson.


Environmental Science & Technology | 2011

Bottlenose dolphins as indicators of persistent organic pollutants in the western North Atlantic Ocean and northern Gulf of Mexico.

John R. Kucklick; Lori H. Schwacke; Randy Wells; Aleta A. Hohn; Aurore Guichard; Jennifer Yordy; Larry J. Hansen; Eric S. Zolman; Rachel M. Wilson; Jenny Litz; Doug Nowacek; Teri Rowles; Rebecca S. Pugh; Brian C. Balmer; Carrie Sinclair; Patricia E. Rosel

Persistent organic pollutants (POPs) including legacy POPs (PCBs, chlordanes, mirex, DDTs, HCB, and dieldrin) and polybrominated diphenyl ether (PBDE) flame retardants were determined in 300 blubber biopsy samples from coastal and near shore/estuarine male bottlenose dolphins (Tursiops truncatus) sampled along the U.S. East and Gulf of Mexico coasts and Bermuda. Samples were from 14 locations including urban and rural estuaries and near a Superfund site (Brunswick, Georgia) contaminated with the PCB formulation Aroclor 1268. All classes of legacy POPs in estuarine stocks varied significantly (p < 0.05) among sampling locations. POP profiles in blubber varied by location with the most characteristic profile observed in bottlenose dolphins sampled near the Brunswick and Sapelo estuaries along the Georgia coast which differed significantly (p < 0.001) from other sites. Here and in Sapelo, PCB congeners from Aroclor 1268 dominated indicating widespread food web contamination by this PCB mixture. PCB 153, which is associated with non-Aroclor 1268 PCB formulations, correlated significantly to human population indicating contamination from a general urban PCB source. Factors influencing regional differences of other POPs were less clear and warrant further study. This work puts into geographical context POP contamination in dolphins to help prioritize efforts examining health effects from POP exposure in bottlenose dolphins.


Environmental Research Letters | 2012

Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico

Jeffrey P. Chanton; Jennifer Cherrier; Rachel M. Wilson; J Sarkodee-Adoo; Samantha Bosman; Alejandra Mickle; William M. Graham

The Deepwater Horizon (Macondo) oil spill released large volumes of oil and gas of distinct carbon isotopic composition to the northern Gulf of Mexico, allowing Graham et al (2010 Environ. Res. Lett. 5 045301) to use stable carbon isotopes (δ13C) to infer the introduction of spilled oil into the planktonic food web. Surface ocean organic production and measured oil are separated by 5–7‰ in stable carbon isotope (δ13C) space, while in radiocarbon (Δ14C) space these two potential sources are separated by more than 1000‰. Thus radiocarbon isotopes provide a more sensitive tracer by which to infer possible introduction of Macondo oil into the food web. We measured Δ14C and δ13C in plankton collected from within 100 km of the spill site as well as in coastal and offshore DIC (dissolved inorganic carbon or ΣCO2) to constrain surface production values. On average, plankton values were depleted in 14C relative to surface DIC, and we found a significant linear correlation between Δ14C and δ13C in plankton. Cumulatively, these results are consistent with the hypothesis that carbon released from the Deepwater Horizon spill contributed to the offshore planktonic food web. Our results support the findings of Graham et al (2010 Environ. Res. Lett. 5 045301), but we infer that methane input may be important.


Nature Communications | 2016

Stability of peatland carbon to rising temperatures

Rachel M. Wilson; A. M. Hopple; Malak M. Tfaily; S. D. Sebestyen; Christopher W. Schadt; Laurel Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; Joel E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; Jason K. Keller; T. P. Guilderson; N. A. Griffiths; Jeffrey P. Chanton; Scott D. Bridgham; Paul J. Hanson

Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH4 and CO2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. There are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. These results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.


Science of The Total Environment | 2012

Spatial distribution of bottlenose dolphins (Tursiops truncatus) inferred from stable isotopes and priority organic pollutants.

Rachel M. Wilson; John R. Kucklick; Brian C. Balmer; Randall S. Wells; Jeffrey P. Chanton; Douglas P. Nowacek

Differences in priority organic pollutants (POPs), analyzed by gas chromatography-mass spectrometry, and stable isotope ratios (δ(13)C, δ(34)S, and δ(15)N; analyzed by isotope ratio-mass spectrometry), divide 77 bottlenose dolphins (Tursiops truncatus) from the Florida Gulf Coast into three distinct groups. POP levels reflect human population and historical contamination along the coast. In the least disturbed site, concentrations of ΣPOP in male dolphins were 18,000 ng g(-1)±6000 (95% confidence interval here and throughout); in the intermediate bay, males had ΣPOP concentrations of 19,000 ng g(-1)±10,000. St Andrews Bay was home to dolphins with the highest ΣPOP concentrations: 44,000 ng g(-1)±10,300. δ(34)S and δ(15)N, differed significantly between St. George Sound dolphins and those frequenting each of the other two bays, but not between St. Andrews and St. Joseph Bays. ΣPOP concentrations were statistically higher in dolphins frequenting St. Andrews Bay, but were not significantly different between dolphins occupying St. Joseph Bay and St. George Sound. Thus, using either POP or isotope values alone, we would only be able to identify two dolphin groups, but when POP and isotope data are viewed cumulatively, the results clearly define three distinct communities occupying this region.


Photochemistry and Photobiology | 2015

Utilization of PARAFAC‐Modeled Excitation‐Emission Matrix (EEM) Fluorescence Spectroscopy to Identify Biogeochemical Processing of Dissolved Organic Matter in a Northern Peatland

Malak M. Tfaily; Jane E. Corbett; Rachel M. Wilson; Jeffrey P. Chanton; Paul H. Glaser; Kaelin M. Cawley; Rudolf Jaffé; William T. Cooper

In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM‐PARAFAC). EEM‐PARAFAC identified four humic‐like components and one protein‐like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC‐EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV‐Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT‐ICR MS). The FT‐ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen‐rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT‐ICR MS has the potential to provide significant molecular‐based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.


Rapid Communications in Mass Spectrometry | 2012

Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation

Laura Lapham; Rachel M. Wilson; Jeffrey P. Chanton

The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected by physical processes, and can thus be interpreted to result from either the gas source or associated microbial processes.


Journal of Geophysical Research | 2017

Greenhouse gas balance over thaw‐freeze cycles in discontinuous zone permafrost

Rachel M. Wilson; L. Fitzhugh; Gary J. Whiting; Stephen E. Frolking; M. D. Harrison; Natasha T. Dimova; William C. Burnett; Jeffrey P. Chanton

Peat in the discontinuous permafrost zone contains a globally significant reservoir of carbon that has undergone multiple permafrost-thaw cycles since the end of the mid-Holocene (~3700 years before present). Periods of thaw increase C decomposition rates which leads to the release of CO2 and CH4 to the atmosphere creating potential climate feedback. To determine the magnitude and direction of such feedback, we measured CO2 and CH4 emissions and modeled C accumulation rates and radiative fluxes from measurements of two radioactive tracers with differing lifetimes to describe the C balance of the peatland over multiple permafrost-thaw cycles since the initiation of permafrost at the site. At thaw features, the balance between increased primary production and higher CH4 emission stimulated by warmer temperatures and wetter conditions favors C sequestration and enhanced peat accumulation. Flux measurements suggest that frozen plateaus may intermittently (order of years to decades) act as CO2 sources depending on temperature and net ecosystem respiration rates, but modeling results suggest that—despite brief periods of net C loss to the atmosphere at the initiation of thaw—integrated over millennia, these sites have acted as net C sinks via peat accumulation. In greenhouse gas terms, the transition from frozen permafrost to thawed wetland is accompanied by increasing CO2 uptake that is partially offset by increasing CH4 emissions. In the short-term (decadal time scale) the net effect of this transition is likely enhanced warming via increased radiative C emissions, while in the long-term (centuries) net C deposition provides a negative feedback to climate warming.


Nature | 2018

Genome-centric view of carbon processing in thawing permafrost

Ben J. Woodcroft; Caitlin M. Singleton; Joel A. Boyd; Paul N. Evans; Joanne B. Emerson; Ahmed A. F. Zayed; Robert D. Hoelzle; Timothy O. Lamberton; Carmody K. McCalley; Suzanne B. Hodgkins; Rachel M. Wilson; Samuel O. Purvine; Carrie D. Nicora; Changsheng Li; Steve Frolking; Jeffrey P. Chanton; Patrick M. Crill; Scott R. Saleska; Virginia I. Rich; Gene W. Tyson

As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming available for microbial degradation. Accurate prediction of carbon gas emissions from thawing permafrost is limited by our understanding of these microbial communities. Here we use metagenomic sequencing of 214 samples from a permafrost thaw gradient to recover 1,529 metagenome-assembled genomes, including many from phyla with poor genomic representation. These genomes reflect the diversity of this complex ecosystem, with genus-level representatives for more than sixty per cent of the community. Meta-omic analysis revealed key populations involved in the degradation of organic matter, including bacteria whose genomes encode a previously undescribed fungal pathway for xylose degradation. Microbial and geochemical data highlight lineages that correlate with the production of greenhouse gases and indicate novel syntrophic relationships. Our findings link changing biogeochemistry to specific microbial lineages involved in carbon processing, and provide key information for predicting the effects of climate change on permafrost systems.Analysis of more than 1,500 microbial genomes sheds light on the processing of carbon released as permafrost thaws.


Journal of Geophysical Research | 2017

Data-Constrained Projections of Methane Fluxes in a Northern Minnesota Peatland in Response to Elevated CO2 and Warming

Shuang Ma; Jiang Jiang; Yuanyuan Huang; Zheng Shi; Rachel M. Wilson; Daniel M. Ricciuto; Stephen D. Sebestyen; Paul J. Hanson; Yiqi Luo

Large uncertainties exist in predicting responses of wetland methane (CH4) fluxes to future climate change. However, sources of the uncertainty have not been clearly identified despite the fact that methane production and emission processes have been extensively explored. In this study, we took advantage of manual CH4 flux measurements under ambient environment from 2011-2014 at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experimental site and developed a data-informed process-based methane module. The module was incorporated into the Terrestrial ECOsystem (TECO) model before its parameters were constrained with multiple years of methane flux data for forecasting CH4 emission under five warming and two elevated CO2 treatments at SPRUCE. We found that 9 °C warming treatments significantly increased methane emission by approximately 400%, and elevated CO2 treatments stimulated methane emission by 10.4% - 23.6% in comparison with ambient conditions. The relative contribution of plant-mediated transport to methane emission decreased from 96% at the control to 92% at the 9 °C warming, largely to compensate for an increase in ebullition. The uncertainty in plant-mediated transportation and ebullition increased with warming and contributed to the overall changes of emissions uncertainties. At the same time, our modeling results indicated a significant increase in the emitted CH4:CO2 ratio. This result, together with the larger warming potential of CH4, will lead to a strong positive feedback from terrestrial ecosystems to climate warming. The model-data fusion approach used in this study enabled parameter estimation and uncertainty quantification for forecasting methane fluxes.


Nature microbiology | 2018

Host-linked soil viral ecology along a permafrost thaw gradient

Joanne B. Emerson; Simon Roux; Jennifer R. Brum; Benjamin Bolduc; Ben J. Woodcroft; Ho Bin Jang; Caitlin M. Singleton; Lindsey M. Solden; Adrian E. Naas; Joel A. Boyd; Suzanne B. Hodgkins; Rachel M. Wilson; Gareth Trubl; Changsheng Li; Steve Frolking; Phillip B. Pope; Kelly C. Wrighton; Patrick M. Crill; Jeffrey P. Chanton; Scott R. Saleska; Gene W. Tyson; Virginia I. Rich; Matthew B. Sullivan

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1–7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8–10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment.

Collaboration


Dive into the Rachel M. Wilson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malak M. Tfaily

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian C. Balmer

Chicago Zoological Society

View shared research outputs
Top Co-Authors

Avatar

Paul J. Hanson

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joel E. Kostka

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John R. Kucklick

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Laura L. Lapham

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleta A. Hohn

National Marine Fisheries Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge