Lauren B. Sloane
University of Texas Health Science Center at San Antonio
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lauren B. Sloane.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014
Yiqiang Zhang; Alex Bokov; John Gelfond; Vanessa Soto; Yuji Ikeno; Gene Hubbard; Vivian Diaz; Lauren B. Sloane; Keith Maslin; Stephen Treaster; Samantha Réndon; Holly Van Remmen; Walter F. Ward; Martin A. Javors; Arlan Richardson; Steven N. Austad; Kathleen E. Fischer
Target of rapamycin inhibition by rapamycin feeding has previously been shown to extend life in genetically heterogeneous mice. To examine whether it similarly affected mouse health, we fed encapsulated rapamycin or a control diet to C57BL/6Nia mice of both sexes starting at 19 months of age. We performed a range of health assessments 6 and 12 months later. Rapamycin feeding significantly reduced mTOR activity in most but not all tissues. It also reduced total and resting metabolic rate during the light (inactive) phase of the light:dark cycle in females only but had no effect on spontaneous activity or metabolism during the dark (active) phase of either sex. Males only had less fragmented sleep when fed rapamycin, whereas stride length and rotarod performance were improved in both sexes. Survival was also improved by this late-life rapamycin feeding, and some pathological lesions were delayed. We found no adverse health consequences associated with rapamycin treatment.
Neuroscience | 2012
Jonathan Halloran; Stacy A. Hussong; Raquel Burbank; Natalia Podlutskaya; Keyt Fischer; Lauren B. Sloane; Steven N. Austad; Randy Strong; Arlan Richardson; Matthew J. Hart; Veronica Galvan
Aging is, by far, the greatest risk factor for most neurodegenerative diseases. In non-diseased conditions, normal aging can also be associated with declines in cognitive function that significantly affect quality of life in the elderly. It was recently shown that inhibition of Mammalian TOR (mTOR) activity in mice by chronic rapamycin treatment extends lifespan, possibly by delaying aging {Harrison, 2009 #4}{Miller, 2011 #168}. To explore the effect of chronic rapamycin treatment on normal brain aging we determined cognitive and non-cognitive components of behavior throughout lifespan in male and female C57BL/6 mice that were fed control- or rapamycin-supplemented chow. Our studies show that rapamycin enhances cognitive function in young adult mice and blocks age-associated cognitive decline in older animals. In addition, mice fed with rapamycin-supplemented chow showed decreased anxiety and depressive-like behavior at all ages tested. Levels of three major monoamines (norepinephrine, dopamine and 5-hydroxytryptamine) and their metabolites (3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindolacetic acid) were significantly augmented in midbrain of rapamycin-treated mice compared to controls. Our results suggest that chronic, partial inhibition of mTOR by oral rapamycin enhances learning and memory in young adults, maintains memory in old C57BL/6J mice, and has concomitant anxiolytic and antidepressant-like effects, possibly by stimulating major monoamine pathways in brain.
Cell Reports | 2014
Jiyoon Ryu; Amanda K. Galan; Xiaoban Xin; Feng Dong; Muhammad A. Abdul-Ghani; Lijun Zhou; Changhua Wang; Cuiling Li; Bekke M. Holmes; Lauren B. Sloane; Steven N. Austad; Shaodong Guo; Nicolas Musi; Ralph A. DeFronzo; Chu-Xia Deng; Morris F. White; Feng Liu; Lily Q. Dong
SUMMARY Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways.
Diabetes | 2012
Meilian Liu; Ruihua Xiang; Sarah Ann Wilk; Ning Zhang; Lauren B. Sloane; Kian Azarnoush; Lijun Zhou; Hongzhi Chen; Guangda Xiang; Christi A. Walter; Steven N. Austad; Nicolas Musi; Ralph A. DeFronzo; Reto Asmis; Philipp E. Scherer; Lily Q. Dong; Feng Liu
The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders.
Aging Cell | 2015
Michael E. Walsh; Arunabh Bhattacharya; Kavithalakshmi Sataranatarajan; Rizwan Qaisar; Lauren B. Sloane; Md. Mizanur Rahman; Michael Kinter; Holly Van Remmen
Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.
Cancer Prevention Research | 2014
Paul Hasty; Carolina B. Livi; Sherry G. Dodds; Diane Jones; Randy Strong; Martin A. Javors; Kathleen E. Fischer; Lauren B. Sloane; Kruthi Murthy; Gene B. Hubbard; Lishi Sun; Vincent Hurez; Tyler J. Curiel; Zelton Dave Sharp
Mutation of a single copy of the adenomatous polyposis coli (APC) gene results in familial adenomatous polyposis (FAP), which confers an extremely high risk for colon cancer. ApcMin/+ mice exhibit multiple intestinal neoplasia (MIN) that causes anemia and death from bleeding by 6 months. Mechanistic target of rapamycin complex 1 (mTORC1) inhibitors were shown to improve ApcMin/+ mouse survival when administered by oral gavage or added directly to the chow, but these mice still died from neoplasia well short of a natural life span. The National Institute of Aging Intervention Testing Program showed that enterically targeted rapamycin (eRapa) extended life span for wild-type genetically heterogeneous mice in part by inhibiting age-associated cancer. We hypothesized that eRapa would be effective in preventing neoplasia and extend survival of ApcMin/+ mice. We show that eRapa improved survival of ApcMin/+ mice in a dose-dependent manner. Remarkably, and in contrast to previous reports, most of the ApcMin/+ mice fed 42 parts per million eRapa lived beyond the median life span reported for wild-type syngeneic mice. Furthermore, chronic eRapa did not cause detrimental immune effects in mouse models of cancer, infection, or autoimmunity, thus assuaging concerns that chronic rapamycin treatment suppresses immunity. Our studies suggest that a novel formulation (enteric targeting) of a well-known and widely used drug (rapamycin) can dramatically improve its efficacy in targeted settings. eRapa or other mTORC1 inhibitors could serve as effective cancer preventatives for people with FAP without suppressing the immune system, thus reducing the dependency on surgery as standard therapy. Cancer Prev Res; 7(1); 169–78. ©2013 AACR.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Yun Shi; Daniel Pulliam; Yuhong Liu; Ryan T. Hamilton; Amanda L. Jernigan; Arunabh Bhattacharya; Lauren B. Sloane; Wenbo Qi; Asish R. Chaudhuri; Rochelle Buffenstein; Zoltan Ungvari; Steven N. Austad; Holly Van Remmen
Comparing biological processes in closely related species with divergent life spans is a powerful approach to study mechanisms of aging. The oxidative stress hypothesis of aging predicts that longer-lived species would have lower reactive oxygen species (ROS) generation and/or an increased antioxidant capacity, resulting in reduced oxidative damage with age than in shorter-lived species. In this study, we measured ROS generation in the young adult animals of the long-lived white-footed mouse, Peromyscus leucopus (maximal life span potential, MLSP = 8 yr) and the common laboratory mouse, Mus musculus (C57BL/6J strain; MLSP = 3.5 yr). Consistent with the hypothesis, our results show that skeletal muscle mitochondria from adult P. leucopus produce less ROS (superoxide and hydrogen peroxide) compared with M. musculus. Additionally, P. leucopus has an increase in the activity of antioxidant enzymes superoxide dismutase 1, catalase, and glutathione peroxidase 1 at young age. P. leucopus compared with M. musculus display low levels of lipid peroxidation (isoprostanes) throughout life; however, P. leucopus although having elevated protein carbonyls at a young age, the accrual of protein oxidation with age is minimal in contrast to the linear increase in M. musculus. Altogether, the results from young animals are in agreement with the predictions of the oxidative stress hypothesis of aging with the exception of protein carbonyls. Nonetheless, the age-dependent increase in protein carbonyls is more pronounced in short-lived M. musculus, which supports enhanced protein homeostasis in long-lived P. leucopus.
The FASEB Journal | 2013
Sathyaseelan S. Deepa; Daniel Pulliam; Shauna Hill; Yun Shi; Michael E. Walsh; Adam B. Salmon; Lauren B. Sloane; Ning Zhang; Massimo Zeviani; Carlo Viscomi; Nicolas Musi; Holly Van Remmen
Mice lacking Surf1, a complex IV assembly protein, have ~50‐70% reduction in cytochrome c oxidase activity in all tissues yet a paradoxical increase in lifespan. Here we report that Surf1–/– mice have lower body (15%) and fat (20%) mass, in association with reduced lipid storage, smaller adipocytes, and elevated indicators of fatty acid oxidation in white adipose tissue (WAT) compared with control mice. The respiratory quotient in the Surf1–/– mice was significantly lower than in the control animals (0.83–0.93 vs. 0.90–0.98), consistent with enhanced fat utilization in Surf1–/– mice. Elevated fat utilization was associated with increased insulin sensitivity measured as insulin‐stimulated glucose uptake, as well as an increase in insulin receptor levels (~2‐fold) and glucose transporter type 4 (GLUT4; ~1.3‐fold) levels in WAT in the Surf1–/– mice. The expression of peroxisome proliferator‐activated receptor γ‐coactivator 1‐α (PGC‐1α) mRNA and protein was up‐regulated by 2.5‐ and 1.9‐fold, respectively, in WAT from Surf1–/– mice, and the expression of PGC‐1α target genes and markers of mitochondrial biogenesis was elevated. Together, these findings point to a novel and unexpected link between reduced mitochondrial complex IV activity, enhanced insulin sensitivity, and increased mitochondrial biogenesis that may contribute to the increased longevity in the Surf1–/– mice.—Deepa, S. S., Pulliam, D., Hill, S., Shi, Y., Walsh, M. E., Salmon, A., Sloane, L., Zhang, N., Zeviani, M., Viscomi, C., Musi, N., Van Remmen, H. Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity. FASEB J. 27, 1371–1380 (2013). www.fasebj.org
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2016
Cheresa Calhoun; Pooja Shivshankar; Mirna Saker; Lauren B. Sloane; Carolina B. Livi; Zelton Dave Sharp; Carlos J. Orihuela; Serge Adnot; Eric S. White; Arlan Richardson; Claude Jourdan Le Saux
Age-associated decline in organ function governs life span. We determined the effect of aging on lung function and cellular/molecular changes of 8- to 32-month old mice. Proteomic analysis of lung matrix indicated significant compositional changes with advanced age consistent with a profibrotic environment that leads to a significant increase in dynamic compliance and airway resistance. The excess of matrix proteins deposition was associated modestly with the activation of myofibroblasts and transforming growth factor-beta signaling pathway. More importantly, detection of senescent cells in the lungs increased with age and these cells contributed toward the excess extracellular matrix deposition observed in our aged mouse model and in elderly human samples. Mechanistic target of rapamycin (mTOR)/AKT activity was enhanced in aged mouse lungs compared with those from younger mice associated with the increased expression of the histone variant protein, MH2A, a marker for aging and potentially for senescence. Introduction in the mouse diet of rapamycin, significantly blocked the mTOR activity and limited the activation of myofibroblasts but did not result in a reduction in lung collagen deposition unless it was associated with prevention of cellular senescence. Together these data indicate that cellular senescence significantly contributes to the extracellular matrix changes associated with aging in a mTOR 1-dependent mechanism.
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015
Michael E. Walsh; Lauren B. Sloane; Kathleen E. Fischer; Steven N. Austad; Arlan Richardson; Holly Van Remmen
Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice.
Collaboration
Dive into the Lauren B. Sloane's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputsUniversity of Texas Health Science Center at San Antonio
View shared research outputs