Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael E. Walsh is active.

Publication


Featured researches published by Michael E. Walsh.


Free Radical Biology and Medicine | 2014

The effects of dietary restriction on oxidative stress in rodents

Michael E. Walsh; Yun Shi; Holly Van Remmen

Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.


Aging Cell | 2015

The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging

Michael E. Walsh; Arunabh Bhattacharya; Kavithalakshmi Sataranatarajan; Rizwan Qaisar; Lauren B. Sloane; Md. Mizanur Rahman; Michael Kinter; Holly Van Remmen

Sarcopenia, the loss of skeletal muscle mass and function during aging, is a major contributor to disability and frailty in the elderly. Previous studies found a protective effect of reduced histone deacetylase activity in models of neurogenic muscle atrophy. Because loss of muscle mass during aging is associated with loss of motor neuron innervation, we investigated the potential for the histone deacetylase (HDAC) inhibitor butyrate to modulate age‐related muscle loss. Consistent with previous studies, we found significant loss of hindlimb muscle mass in 26‐month‐old C57Bl/6 female mice fed a control diet. Butyrate treatment starting at 16 months of age wholly or partially protected against muscle atrophy in hindlimb muscles. Butyrate increased muscle fiber cross‐sectional area and prevented intramuscular fat accumulation in the old mice. In addition to the protective effect on muscle mass, butyrate reduced fat mass and improved glucose metabolism in 26‐month‐old mice as determined by a glucose tolerance test. Furthermore, butyrate increased markers of mitochondrial biogenesis in skeletal muscle and whole‐body oxygen consumption without affecting activity. The increase in mass in butyrate‐treated mice was not due to reduced ubiquitin‐mediated proteasomal degradation. However, butyrate reduced markers of oxidative stress and apoptosis and altered antioxidant enzyme activity. Our data is the first to show a beneficial effect of butyrate on muscle mass during aging and suggests HDACs contribute to age‐related muscle atrophy and may be effective targets for intervention in sarcopenia and age‐related metabolic disease.


PLOS ONE | 2013

Elevated Protein Carbonylation, and Misfolding in Sciatic Nerve from db/db and Sod1−/− Mice: Plausible Link between Oxidative Stress and Demyelination

Ryan T. Hamilton; Arunabh Bhattacharya; Michael E. Walsh; Yun Shi; Rochelle Wei; Yiqiang Zhang; Karl A. Rodriguez; Rochelle Buffenstein; Asish R. Chaudhuri; Holly Van Remmen

Diabetic peripheral polyneuropathy is associated with decrements in motor/sensory neuron myelination, nerve conduction and muscle function; however, the mechanisms of reduced myelination in diabetes are poorly understood. Chronic elevation of oxidative stress may be one of the potential determinants for demyelination as lipids and proteins are important structural constituents of myelin and highly susceptible to oxidation. The goal of the current study was to determine whether there is a link between protein oxidation/misfolding and demyelination. We chose two distinct models to test our hypothesis: 1) the leptin receptor deficient mouse (dbdb) model of diabetic polyneuropathy and 2) superoxide dismutase 1 knockout (Sod1−/−) mouse model of in vivo oxidative stress. Both experimental models displayed a significant decrement in nerve conduction, increase in tail distal motor latency as well as reduced myelin thickness and fiber/axon diameter. Further biochemical studies demonstrated that oxidative stress is likely to be a potential key player in the demyelination process as both models exhibited significant elevation in protein carbonylation and alterations in protein conformation. Since peripheral myelin protein 22 (PMP22) is a key component of myelin sheath and has been found mutated and aggregated in several peripheral neuropathies, we predicted that an increase in carbonylation and aggregation of PMP22 may be associated with demyelination in dbdb mice. Indeed, PMP22 was found to be carbonylated and aggregated in sciatic nerves of dbdb mice. Sequence-driven hydropathy plot analysis and in vitro oxidation-induced aggregation of purified PMP22 protein supported the premise for oxidation-dependent aggregation of PMP22 in dbdb mice. Collectively, these data strongly suggest for the first time that oxidation-mediated protein misfolding and aggregation of key myelin proteins may be linked to demyelination and reduced nerve conduction in peripheral neuropathies.


PLOS ONE | 2014

The Lack of CuZnSOD Leads to Impaired Neurotransmitter Release, Neuromuscular Junction Destabilization and Reduced Muscle Strength in Mice

Yun Shi; Maxim V. Ivannikov; Michael E. Walsh; Yuhong Liu; Yiqiang Zhang; Carlos A. Jaramillo; Gregory T. Macleod; Holly Van Remmen

Elevated reactive oxygen species (ROS) production and ROS-dependent protein damage is a common observation in the pathogenesis of many muscle wasting disorders, including sarcopenia. However, the contribution of elevated ROS levels to –a breakdown in neuromuscular communication and muscle atrophy remains unknown. In this study, we examined a copper zinc superoxide dismutase [CuZnSOD (Sod1)] knockout mouse (Sod1 −/−), a mouse model of elevated oxidative stress that exhibits accelerated loss of muscle mass, which recapitulates many phenotypes of sarcopenia as early as 5 months of age. We found that young adult Sod1 −/− mice display a considerable reduction in hind limb skeletal muscle mass and strength when compared to age-matched wild-type mice. These changes are accompanied by gross alterations in neuromuscular junction (NMJ) morphology, including reduced occupancy of the motor endplates by axons, terminal sprouting and axon thinning and irregular swelling. Surprisingly however, the average density of acetylcholine receptors in endplates is preserved. Using in vivo electromyography and ex vivo electrophysiological studies of hind limb muscles in Sod1 −/− mice, we found that motor axons innervating the extensor digitorum longus (EDL) and gastrocnemius muscles release fewer synaptic vesicles upon nerve stimulation. Recordings from individually identified EDL NMJs show that reductions in neurotransmitter release are apparent in the Sod1 −/− mice even when endplates are close to fully innervated. However, electrophysiological properties, such as input resistance, resting membrane potential and spontaneous neurotransmitter release kinetics (but not frequency) are similar between EDL muscles of Sod1 −/− and wild-type mice. Administration of the potassium channel blocker 3,4-diaminopyridine, which broadens the presynaptic action potential, improves both neurotransmitter release and muscle strength. Together, these results suggest that ROS-associated motor nerve terminal dysfunction is a contributor to the observed muscle changes in Sod1 −/− mice.


The FASEB Journal | 2013

Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity

Sathyaseelan S. Deepa; Daniel Pulliam; Shauna Hill; Yun Shi; Michael E. Walsh; Adam B. Salmon; Lauren B. Sloane; Ning Zhang; Massimo Zeviani; Carlo Viscomi; Nicolas Musi; Holly Van Remmen

Mice lacking Surf1, a complex IV assembly protein, have ~50‐70% reduction in cytochrome c oxidase activity in all tissues yet a paradoxical increase in lifespan. Here we report that Surf1–/– mice have lower body (15%) and fat (20%) mass, in association with reduced lipid storage, smaller adipocytes, and elevated indicators of fatty acid oxidation in white adipose tissue (WAT) compared with control mice. The respiratory quotient in the Surf1–/– mice was significantly lower than in the control animals (0.83–0.93 vs. 0.90–0.98), consistent with enhanced fat utilization in Surf1–/– mice. Elevated fat utilization was associated with increased insulin sensitivity measured as insulin‐stimulated glucose uptake, as well as an increase in insulin receptor levels (~2‐fold) and glucose transporter type 4 (GLUT4; ~1.3‐fold) levels in WAT in the Surf1–/– mice. The expression of peroxisome proliferator‐activated receptor γ‐coactivator 1‐α (PGC‐1α) mRNA and protein was up‐regulated by 2.5‐ and 1.9‐fold, respectively, in WAT from Surf1–/– mice, and the expression of PGC‐1α target genes and markers of mitochondrial biogenesis was elevated. Together, these findings point to a novel and unexpected link between reduced mitochondrial complex IV activity, enhanced insulin sensitivity, and increased mitochondrial biogenesis that may contribute to the increased longevity in the Surf1–/– mice.—Deepa, S. S., Pulliam, D., Hill, S., Shi, Y., Walsh, M. E., Salmon, A., Sloane, L., Zhang, N., Zeviani, M., Viscomi, C., Musi, N., Van Remmen, H. Improved insulin sensitivity associated with reduced mitochondrial complex IV assembly and activity. FASEB J. 27, 1371–1380 (2013). www.fasebj.org


Free Radical Biology and Medicine | 2016

Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation.

Sathyaseelan S. Deepa; Shylesh Bhaskaran; Rojina Ranjit; Rizwan Qaisar; Binoj C. Nair; Yuhong Liu; Michael E. Walsh; Wilson C. Fok; Holly Van Remmen

The caseinolytic peptidase P (ClpP) is the endopeptidase component of the mitochondrial matrix ATP-dependent ClpXP protease. ClpP degrades unfolded proteins to maintain mitochondrial protein homeostasis and is involved in the initiation of the mitochondrial unfolded protein response (UPR(mt)). Outside of an integral role in the UPR(mt), the cellular function of ClpP is not well characterized in mammalian cells. To investigate the role of ClpP in mitochondrial function, we generated C2C12 muscle cells that are deficient in ClpP using siRNA or stable knockdown using lentiviral transduction. Reduction of ClpP levels by ~70% in C2C12 muscle cells resulted in a number of mitochondrial alterations including reduced mitochondrial respiration and reduced oxygen consumption rate in response to electron transport chain (ETC) complex I and II substrates. The reduction in ClpP altered mitochondrial morphology, changed the expression level of mitochondrial fission protein Drp1 and blunted UPR(mt) induction. In addition, ClpP deficient cells showed increased generation of reactive oxygen species (ROS) and decreased membrane potential. At the cellular level, reduction of ClpP impaired myoblast differentiation, cell proliferation and elevated phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) suggesting an inhibition of translation. Our study is the first to define the effects of ClpP deficiency on mitochondrial function in muscle cells in vitro. In addition, we have uncovered novel effects of ClpP on mitochondrial morphology, cell proliferation and protein translation pathways in muscle cells.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice

Michael E. Walsh; Lauren B. Sloane; Kathleen E. Fischer; Steven N. Austad; Arlan Richardson; Holly Van Remmen

Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice.


Muscle & Nerve | 2015

Butyrate prevents muscle atrophy after sciatic nerve crush

Michael E. Walsh; Arunabh Bhattacharya; Yuhong Liu; Holly Van Remmen

Introduction: Histone deacetylases (HDACs) have been implicated in neurogenic muscle atrophy, but the mechanisms by which HDAC inhibitors might have beneficial effects are not defined. Methods: We used sciatic nerve crush to determine the effect of butyrate on denervation‐induced gene expression and oxidative stress. Results: Butyrate treatment initiated 3 weeks before injury and continued 1 week after injury increases histone acetylation and reduces muscle atrophy after nerve crush. Butyrate delivered only after nerve crush similarly prevented muscle atrophy. Butyrate had no effect on the increase in histone deacetylase 4 (HDAC4) protein levels following nerve crush but prevented the increase in expression of myogenin, MuRF1, and atrogin‐1. Butyrate did not affect mitochondrial reactive oxygen species production, but it increased antioxidant enzyme activity, reduced proteasome activity, and reduced oxidative damage following nerve injury. Conclusions: These data suggest that HDAC inhibitors are promising pharmacological agents for treating neurogenic muscle atrophy. Muscle Nerve 52: 859–868, 2015


Scientific Reports | 2017

Moderate lifelong overexpression of tuberous sclerosis complex 1 (TSC1) improves health and survival in mice

Hong Mei Zhang; Vivian Diaz; Michael E. Walsh; Yiqiang Zhang

The tuberous sclerosis complex 1/2 (TSC1/2) is an endogenous regulator of the mechanistic target of rapamycin (mTOR). While mTOR has been shown to play an important role in health and aging, the role of TSC1/2 in aging has not been fully investigated. In the current study, a constitutive TSC1 transgenic (Tsc1tg) mouse model was generated and characterized. mTORC1 signaling was reduced in majority of the tissues, except the brain. In contrast, mTORC2 signaling was enhanced in Tsc1tg mice. Tsc1tg mice are more tolerant to exhaustive exercises and less susceptible to isoproterenol-induced cardiac hypertrophy at both young and advanced ages. Tsc1tg mice have less fibrosis and inflammation in aged as well as isoproterenol-challenged heart than age-matched wild type mice. The female Tsc1tg mice exhibit a higher fat to lean mass ratio at advanced ages than age-matched wild type mice. More importantly, the lifespan increased significantly in female Tsc1tg mice, but not in male Tsc1tg mice. Collectively, our data demonstrated that moderate increase of TSC1 expression can enhance overall health, particularly cardiovascular health, and improve survival in a gender-specific manner.


Journal of the Neurological Sciences | 2016

Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice

Ryan T. Hamilton; Michael E. Walsh; Rashmi Singh; Karl A. Rodriguez; Xiaoli Gao; Mizanur Rahman; Asish R. Chaudhuri; Arunabh Bhattacharya

Aging is associated with a decline in peripheral nerve function of both motor and sensory nerves. The decline in function of peripheral sensorimotor nerves with aging has been linked to sarcopenia, the age-related decline in muscle mass and function that significantly compromises the quality of life in older humans. In this study, we report a significant increase in oxidized fatty acids and insoluble protein carbonyls in sciatic nerves of aged C57BL/6 male mice (28-30mo) that exhibit a profound decline in motor nerve function and degenerative changes in both axon and myelin structure, compared to young mice (6-8mo). Our data further suggests that this age-related loss of function of peripheral motor nerves is likely precipitated by changes in mechanisms that protect and/or repair oxidative damage. We predict that interventions that target these mechanisms may protect against age-related decline in peripheral sensorimotor nerve function and likely improve the debilitating outcome of sarcopenia in older humans.

Collaboration


Dive into the Michael E. Walsh's collaboration.

Top Co-Authors

Avatar

Holly Van Remmen

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Arunabh Bhattacharya

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yiqiang Zhang

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yuhong Liu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Yun Shi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Lauren B. Sloane

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asish R. Chaudhuri

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Karl A. Rodriguez

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Nicolas Musi

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge