Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lauren E. Koenig is active.

Publication


Featured researches published by Lauren E. Koenig.


Frontiers in Ecology and the Environment | 2014

Macrosystems ecology: understanding ecological patterns and processes at continental scales

James B. Heffernan; Patricia A. Soranno; Michael J Angilletta; Lauren B. Buckley; Daniel S. Gruner; Timothy H. Keitt; James R. Kellner; John S Kominoski; Adrian V. Rocha; Jingfeng Xiao; Tamara K. Harms; Simon Goring; Lauren E. Koenig; William H. McDowell; Heather Powell; Andrew D. Richardson; Craig A. Stow; Rodrigo Vargas; Kathleen C. Weathers

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisci- plines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents.


Journal of Geophysical Research | 2016

Dissolved organic carbon uptake in streams: A review and assessment of reach‐scale measurements

Madeleine M. Mineau; Wilfred M. Wollheim; Ishi Buffam; Stuart E. G. Findlay; Robert O. Hall; Erin R. Hotchkiss; Lauren E. Koenig; William H. McDowell; Thomas Parr

Quantifying the role that freshwater ecosystems play in the global carbon cycle requires accurate measurement and scaling of dissolved organic carbon (DOC) removal in river networks. We reviewed reach-scale measurements of DOC uptake from experimental additions of simple organic compounds or leachates to inform development of aquatic DOC models that operate at the river network, regional, or continental scale. Median DOC uptake velocity (vf) across all measurements was 2.28u2009mmu2009min−1. Measurements using simple compound additions resulted in faster vf (2.94u2009mmu2009min−1) than additions of leachates (1.11u2009mmu2009min−1). We also reviewed published data of DOC bioavailability for ambient stream water and leaf leachate DOC from laboratory experiments. We used these data to calculate and apply a correction factor to leaf leachate uptake velocity to estimate ambient stream water DOC uptake rates at the reach scale. Using this approach, we estimated a median ambient stream DOC vf of 0.26u2009mmu2009min−1. Applying these DOC vf values (0.26, 1.11, 2.28, and 2.94u2009mmu2009min−1) in a river network inverse model in seven watersheds revealed that our estimated ambient DOC vf value is plausible at the network scale and 27 to 45% of DOC input was removed. Applying the median measured simple compound or leachate vf in whole river networks would require unjustifiably high terrestrial DOC inputs to match observed DOC concentrations at the basin mouth. To improve the understanding and importance of DOC uptake in fluvial systems, we recommend using a multiscale approach coupling laboratory assays, with reach-scale measurements, and modeling.


Landscape Ecology | 2016

Baseflow physical characteristics differ at multiple spatial scales in stream networks across diverse biomes

Janine Rüegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt R. Whiles; Wilfred M. Wollheim

ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.ObjectiveWe characterized variation of physical stream attributes during periods of high biological activity (i.e., baseflow) to match physical and ecological measurements and to identify the spatial scales exhibiting and predicting heterogeneity.MethodsWe measured canopy cover, wetted width, water depth, and sediment size along transects of 1st–5th order reaches in five stream networks located in biomes from tropical forest to arctic tundra. We used hierarchical analysis of variance with three nested scales (watersheds, stream orders, reaches) to identify scales exhibiting significant heterogeneity in attributes and regression analyses to characterize gradients within and across stream networks.ResultsHeterogeneity was evident at one or multiple spatial scales: canopy cover and water depth varied significantly at all three spatial scales while wetted width varied at two scales (stream order and reach) and sediment size remained largely unexplained. Similarly, prediction by drainage area depended on the attribute considered: depending on the watershed, increases in wetted width and water depth with drainage area were best fit with a linear, logarithmic, or power function. Variation in sediment size was independent of drainage area.ConclusionsThe scaling of ecologicallyxa0relevant baseflow physical characteristics will require study beyond the traditional bankfull geomorphology since predictions of baseflow physical attributes by drainage area were not always best explained by geomorphic power laws.


Freshwater Science | 2017

Nitrification increases nitrogen export from a tropical river network

Lauren E. Koenig; Chao Song; Wilfred M. Wollheim; Janine Rüegg; William H. McDowell

Scaling aquatic ecosystem processes like nutrient removal is critical for assessing the importance of streams and rivers to watershed nutrient export. We used pulse NH4+ enrichment experiments and measured net NH4+ uptake in 7 streams throughout a mountainous tropical river network in Puerto Rico to assess spatial variability in NH4+ uptake and to infer the physical, chemical, and biological characteristics that most influence its variation. Across 14 experiments, NH4+ uptake velocity (vf) ranged from 0.3 to 8.5 (mean = 2.7) mm/min and was positively related to algal biomass standing stock, measured as chlorophyll a. On average, 49% of experimentally added NH4+ was immediately transformed to NO3−, suggesting that nitrification can rival microbial and algal assimilation as a fate of streamwater NH4+. We considered the implications of our empirical results at the river-network scale based on a simple mass-balance model parameterized for the Río Mameyes watershed. Most catchment NH4+ inputs are delivered to 1st-order streams. Therefore, model results indicated that high NH4+ uptake rates in headwater streams limit NH4+ inputs to downstream reaches, thereby decreasing the role of larger streams in NH4+ removal at the river-network scale. In-stream nitrification resulted in additional NO3− inputs, which were more likely than NH4+ to be transported downstream because of lower biological demand for NO3− relative to NH4+. Given our estimates of catchment N loading to streams and rivers, we estimated that 39% of modeled watershed NO3− export was produced within the river network by nitrification. Together, these results suggest that streams and rivers can significantly transform the N load from their catchments.


Water Resources Research | 2017

Deconstructing the Effects of Flow on DOC, Nitrate, and Major Ion Interactions Using a High‐Frequency Aquatic Sensor Network

Lauren E. Koenig; M. D. Shattuck; Lisle Snyder; Jody D. Potter; William H. McDowell

Streams provide a physical linkage between land and downstream river networks, delivering solutes derived from multiple catchment sources. We analyzed high-frequency time series of stream solutes to characterize the timing and magnitude of major ion, nutrient and organic matter transport over event, seasonal, and annual timescales as well as to assess whether nitrate (NO3-) and dissolved organic carbon (DOC) transport are coupled in catchments, which would be expected if they are subject to similar biogeochemical controls throughout the watershed. Our dataset includes in situ observations of NO3-, fluorescent dissolved organic matter (DOC proxy), and specific conductance spanning 2 – 4 years in 10 streams and rivers across New Hampshire, including observations of nearly 700 individual hydrologic events. We found a positive response of NO3- and DOC to flow in forested streams, but watershed development led to a negative relationship between NO3- and discharge, and thus a de-coupling of the overall NO3- and DOC responses to flow. On event and seasonal timescales, NO3- and DOC consistently displayed different behavior. For example, in several streams FDOM yield was greatest during summer storms while NO3- yield was greatest during winter storms. Most streams had generalizable storm NO3- and DOC responses, but differences in the timing of NO3- and DOC transport suggest different catchment sources. Further, certain events, including rain-on-snow and summer storms following dry antecedent conditions, yielded disproportionate NO3- responses. High-frequency data allow for increased understanding of the processes controlling solute variability and will help elucidate their responses to changing climatic regimes.


Nature Geoscience | 2018

Continental-scale decrease in net primary productivity in streams due to climate warming

Chao Song; Walter K. Dodds; Janine Rüegg; Alba Argerich; Christina L. Baker; William B. Bowden; Michael M. Douglas; Kaitlin J. Farrell; Michael B. Flinn; Erica A. Garcia; Ashley M. Helton; Tamara K. Harms; Shufang Jia; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Damien McMaster; Samuel P. Parker; Amy D. Rosemond; Claire M. Ruffing; Ken R. Sheehan; Matt T. Trentman; Matt R. Whiles; Wilfred M. Wollheim; Ford Ballantyne

An increase in stream temperature leads to a convergence of metabolic balance, overall decline in net ecosystem productivity, and higher CO2 emissions from streams, according to analyses of temperature sensitivity of stream metabolism across six biomes.AbstractStreams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1u2009°C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194u2009Pg carbon emitted from such streams every year.


Ecosystems | 2018

Variation in Detrital Resource Stoichiometry Signals Differential Carbon to Nutrient Limitation for Stream Consumers Across Biomes

Kaitlin J. Farrell; Amy D. Rosemond; John S. Kominoski; Sophia M. Bonjour; Janine Rüegg; Lauren E. Koenig; Christina L. Baker; Matt T. Trentman; Tamara K. Harms; William H. McDowell

Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable 13C isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector–gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes.


Limnology and Oceanography-methods | 2014

Improving automated phosphorus measurements in freshwater: an analytical approach to eliminating silica interference

Lauren E. Koenig; Adam J. Baumann; William H. McDowell


Journal of Geophysical Research | 2016

Dissolved organic carbon uptake in streams: A review and assessment of reach-scale measurements: DOC Uptake in Streams

Madeleine M. Mineau; Wilfred M. Wollheim; Ishi Buffam; Stuart E. G. Findlay; Robert O. Hall; Erin R. Hotchkiss; Lauren E. Koenig; William H. McDowell; Thomas Parr


Archive | 2018

REGIONAL COHERENCE OF STREAM NITRATE CONCENTRATIONS: IMPLICATIONS FOR THEORY AND MANAGEMENT

Lauren E. Koenig; William H. McDowell; Lisle Snyder; Jody D. Potter

Collaboration


Dive into the Lauren E. Koenig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara K. Harms

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina L. Baker

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Jody D. Potter

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

John S. Kominoski

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisle Snyder

University of New Hampshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge